ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Vivek Agarwal, James A. Smith
Nuclear Technology | Volume 197 | Number 3 | March 2017 | Pages 329-333
NT Letter | doi.org/10.1080/00295450.2016.1273704
Articles are hosted by Taylor and Francis Online.
The core of any nuclear reactor presents a particularly harsh environment for sensors and instrumentation. The reactor core also imposes challenging constraints on signal transmission from inside the reactor core to outside of the reactor vessel. In this letter, an acoustic measurement infrastructure installed at the Advanced Test Reactor (ATR), located at Idaho National Laboratory, is presented. The measurement infrastructure consists of ATR in-pile structural components, coolant, acoustic receivers, primary coolant pumps (PCPs), a data acquisition system, and signal-processing algorithms. Intrinsic and cyclic acoustic signals generated by the operation of the PCPs are collected and processed. The characteristics of the intrinsic signal can indicate the process state of the ATR (such as reactor startup, reactor criticality, reactor attaining maximum power, and reactor shutdown) during operation (i.e., real-time measurement).