ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Robert B. Hayes
Nuclear Technology | Volume 197 | Number 2 | February 2017 | Pages 209-218
Technical Paper | doi.org/10.13182/NT16-98
Articles are hosted by Taylor and Francis Online.
Some quality considerations for use in isotopic dating are presented to identify and correct heretofore unidentified overestimate scenarios. These include to a lesser degree the statistical interpretation issues with linear-least-squares fitting results but more importantly the isotope effect in the individual components of the isochron coefficient ratios. By taking into consideration the isotope effect (differential mass diffusion rates) when measuring isotopic ratios from very old samples, the distribution dependency in the coefficient ratios will cause a bias if isotopic diffusion rates are not identical throughout a sample. The isotope effect is that isotopes having a smaller atomic mass will diffuse faster throughout a medium than will their heavier counterparts causing concentration gradients of their ratios even when there are no contributions from radioactive decay. The application to Rb/Sr dating is evaluated and shown to result in expected age overestimates when isotopic ratios are employed to linearize the isochron. A suggested method to test for this effect is argued to require rigorous statistical analysis. An associated optimal sampling technique would involve using single-grain etching. It is also shown that the only method to fully eliminate the isotope effect is to not use isotopic ratios at all in radioisotopic dating as the physics do not require the use of isotopic ratios for geochronological dating. However, without the ratios, the data are inherently noisy.