ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
Fusion Science and Technology
Latest News
U.S. and Japan collaborate on high-burnup fast reactor fuel safety tests at INL
Idaho National Laboratory recently conducted a safety test on high-burnup fast reactor fuel from historic irradiation testing at the lab’s Experimental Breeder Reactor-II (EBR-II). According to the Department of Energy, which announced the work March 12, it’s the first such safety test to be performed in over 20 years.
M. P. Sharma, A. K. Nayak
Nuclear Technology | Volume 197 | Number 2 | February 2017 | Pages 158-170
Technical Paper | doi.org/10.13182/NT15-127
Articles are hosted by Taylor and Francis Online.
The Advanced Heavy Water Reactor (AHWR) is a vertical pressure tube–type, heavy water–moderated, and boiling light water–cooled natural-circulation–based reactor. The fuel bundle of AHWR contains 54 fuel rods arranged in three concentric rings of 12, 18, and 24 fuel rods. This fuel bundle is divided into a number of imaginary interacting flow passages called subchannels. Transition from a single-phase-flow condition to a two-phase-flow condition occurs in the reactor rod bundle with increase in power. Prediction of the thermal margin of the reactor has necessitated the determination of intersubchannel mixing due to void drift. Void drift is due to redistribution of the non-equilibrium void fraction to attain an equilibrium void fraction. This redistribution occurs in the reactor rod bundle until it reaches the state of equilibrium void fraction. Hence, it is vital to evaluate void drift between subchannels of AHWR rod bundles.
In this paper, experiments were carried out to investigate the void drift phenomena in simulated subchannels of AHWR. The size of the rod and the pitch in the test section were the same as those of the actual rod bundle in the prototype. Three subchannels are considered in 1/12th of the cross section of the rod bundle. Water and air were used as the working fluid, and the experiments were carried out at atmospheric condition without the addition of heat. The void fraction in the simulated subchannels was varied from 0 to 0.8 under various ranges of superficial liquid velocities. The void drift between the subchannels was measured. The test data were compared with existing models in the literature. It was found that the existing models could predict the measured equilibrium void fraction in the rod bundle of the reactor within the range +8% to −14%.