ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Michio Murase, Yoichi Utanohara, Takayoshi Kusunoki, Yasunori Yamamoto, Dirk Lucas, Akio Tomiyama
Nuclear Technology | Volume 197 | Number 2 | February 2017 | Pages 140-157
Technical Paper | doi.org/10.13182/NT16-96
Articles are hosted by Taylor and Francis Online.
We proposed prediction methods for countercurrent flow limitation (CCFL) in horizontal and slightly inclined pipes with one-dimensional (1-D) computations and uncertainty of computed CCFL. In this study, we applied the proposed methods to a full-scale pressurizer surge line [inclination angle θ = 0.6 deg, diameter D = 300 mm, and ratio of the length to the diameter (L/D) = 63] in a specific pressurized water reactor, performed 1-D computations and three-dimensional (3-D) numerical simulations, and found that uncertainties caused by effects of the diameter and fluid properties on CCFL were small. We also applied the proposed methods to experiments for hot-leg and surge line models (θ = 0 and 0.6 deg, D = 0.03 to 0.65 m, and L/D = 4.5 to 63) to generalize them, performed 1-D computations, and found that uncertainties caused by effects of θ and L on CCFL were large due to the setting error for θ and differences among experiments. This shows that a small-scale air-water experiment with the same θ and L/D as those in an actual plant is effective to reduce the uncertainty of CCFL prediction.