ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Michio Murase, Yoichi Utanohara, Takayoshi Kusunoki, Yasunori Yamamoto, Dirk Lucas, Akio Tomiyama
Nuclear Technology | Volume 197 | Number 2 | February 2017 | Pages 140-157
Technical Paper | doi.org/10.13182/NT16-96
Articles are hosted by Taylor and Francis Online.
We proposed prediction methods for countercurrent flow limitation (CCFL) in horizontal and slightly inclined pipes with one-dimensional (1-D) computations and uncertainty of computed CCFL. In this study, we applied the proposed methods to a full-scale pressurizer surge line [inclination angle θ = 0.6 deg, diameter D = 300 mm, and ratio of the length to the diameter (L/D) = 63] in a specific pressurized water reactor, performed 1-D computations and three-dimensional (3-D) numerical simulations, and found that uncertainties caused by effects of the diameter and fluid properties on CCFL were small. We also applied the proposed methods to experiments for hot-leg and surge line models (θ = 0 and 0.6 deg, D = 0.03 to 0.65 m, and L/D = 4.5 to 63) to generalize them, performed 1-D computations, and found that uncertainties caused by effects of θ and L on CCFL were large due to the setting error for θ and differences among experiments. This shows that a small-scale air-water experiment with the same θ and L/D as those in an actual plant is effective to reduce the uncertainty of CCFL prediction.