ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
X-energy, Dow apply to build an advanced reactor project in Texas
Dow and X-energy announced today that they have submitted a construction permit application to the Nuclear Regulatory Commission for a proposed advanced nuclear project in Seadrift, Texas. The project could begin construction later this decade, but only if Dow confirms “the ability to deliver the project while achieving its financial return targets.”
Tuomo Sevón
Nuclear Technology | Volume 197 | Number 2 | February 2017 | Pages 171-179
Technical Paper | doi.org/10.13182/NT16-108
Articles are hosted by Taylor and Francis Online.
The water ingression mechanism can enhance the coolability of a pool of molten corium in containment during a severe accident. A water ingression model was added to the MELCOR code in 2015. The purpose of this work was to test the new model. It was found that the water ingression model performed satisfactorily in core-concrete–interaction experiments in which gas bubbles were released to the melt from decomposing concrete. The new model had little effect in the Small-Scale Water Ingression and Crust Strength (SSWICS) experiments that were done without gas bubbling through the melt. When applied to the Fukushima Daiichi Unit 1 accident, the water ingression model slowed down concrete ablation by 19% but did not quench the melt. Because the water ingression model was added to MELCOR so recently, the default treatment is still to use multipliers for the boiling heat transfer coefficient and thermal conductivity instead of the proper water ingression model. These default parameters significantly overestimated melt coolability in all the experiments that were calculated.