ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Yu Liu, Michael Nishimura, Liqian Li, Karen Colins
Nuclear Technology | Volume 197 | Number 1 | January 2017 | Pages 75-87
Technical Paper | doi.org/10.13182/NT16-97
Articles are hosted by Taylor and Francis Online.
With the advancement of computer and communication technologies, wireless sensor networks (WSNs) are increasingly used in nuclear and space applications of radiation dose monitoring, earth observation, etc. In both cases, intensive radiation effects on electronic survivability are a concern. Gamma-ray damaging mechanisms in semiconductor devices are described as, and specifically linked to, semiconductor property changes in detectors, transistors, and integrated circuits. Radiation damage is cumulative and can result in the premature failure of WSN nodes. Thus, radiation-resistant electronics are commonly used for space and nuclear applications. However, these devices present a significant cost, especially when monitoring large areas. This paper focuses on studying a protocol stack that achieves an effective compromise in the cost and performance in a large-scale gamma radiation environment. The probability density function of a Weibull distribution is used to model failures of individual nodes in simulated WSNs. The distribution parameters are based on results of radiation-damage tests performed on semiconductor devices in the Gamma-220 facility (60Co source) at the Canadian Nuclear Laboratories (CNL). The simulation of the protocol stack proposed in this paper through network simulator 2 (NS2) and the resulting performance analyses could provide useful design insights and considerations for nuclear and space applications. Our work is the first study on designing an environmentally adaptive protocol stack in a large-scale gamma radiation environment for nuclear and space applications.