ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Karl-Fredrik Nilsson, Peter Dillström, Claes-Göran Andersson, Fred Nilsson, Mats Andersson, Philip Minnebo, Lars-Erik Bjorkegren, Bo Erixon
Nuclear Technology | Volume 163 | Number 1 | July 2008 | Pages 3-14
Technical Paper | High-Level Radioactive Waste Management | doi.org/10.13182/NT08-A3964
Articles are hosted by Taylor and Francis Online.
The Swedish KBS-3 copper-cast iron canister for geological disposal of spent nuclear fuel is in an advanced stage. This paper deals with the cast iron insert that provides the mechanical strength of the canister and outlines an approach to assess the failure probabilities for manufactured canisters at large isostatic pressure (44 MPa) that could occur during future glaciations and first steps to derive acceptance criteria to ensure that failure probabilities are extremely small. The work includes a statistical test program using three inserts to determine the tensile, compression, and fracture properties. Specimens used for material characterization were also investigated by microstructural analysis to determine the microstructure and to classify and size defects. It was found that the material scatter and low ductility were caused by many defect types, but slag defects in the form of oxidation films were the most important ones. These data were then used to compute defect distributions for the probabilistic failure analysis of the KBS-3 canisters. A large number of finite element-analyses of canisters were performed at the maximum design load (44 MPa) covering distributions of material parameters and geometrical features of the canisters. The computed probabilities for fracture and plastic collapse were very low even for material data with low ductility. Two large-scale isostatic compression tests of KBS-3 mock-ups to verify safety margins are also described. The failure occurred at loads above 130 MPa in both cases, indicating a safety margin of at least a factor 3 against the maximum design load. As a result of the project, new acceptance criteria are being proposed for insert geometry and material properties, and the manufacturing process for inserts has been modified to ensure that these criteria are always fulfilled.