ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Ching-Sheng Lin, Tongkyu Park, Won Sik Yang
Nuclear Technology | Volume 197 | Number 1 | January 2017 | Pages 29-46
Technical Paper | doi.org/10.13182/NT16-90
Articles are hosted by Taylor and Francis Online.
This paper presents the core design studies of a sodium-cooled fast reactor (SFR) and a sodium-cooled accelerator-driven system (ADS) for a two-stage fast-spectrum fuel cycle to enhance uranium resource utilization and reduce nuclear waste generation. The first-stage SFR starts with low-enriched uranium (LEU) fuel and operates with the recovered uranium and plutonium from the discharged fuels and natural uranium at equilibrium. The recovered minor actinides (MAs) are sent to the second-stage ADS, where they are burned in an inert matrix fuel form. Reference core designs were developed for a 1000-MW(thermal) LEU-fueled breakeven fast reactor (LEUBFR) and an 840-MW(thermal) MA-fueled ADS blanket. The SFR starts with uranium fuel with a 235U enrichment of 13.6% and reaches a fuel-breakeven core after 14 cycles with an 18-month cycle length. At the equilibrium state, one ADS supports 37 fast reactors. Using the performance parameters of SFR and ADS, the proposed two-stage fuel cycle was evaluated. The results of the equilibrium cycle analysis showed that the two-stage fuel cycle option could achieve a high reduction in waste generation because of the continuous recycling of the plutonium and MAs. In addition, the mass flow data showed that this two-stage fuel cycle option increases the efficiency of natural uranium utilization and reduces the nuclear waste generation compared to the conventional two-stage fuel cycle options based on thermal and fast-spectrum systems.