ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
X-energy, Dow apply to build an advanced reactor project in Texas
Dow and X-energy announced today that they have submitted a construction permit application to the Nuclear Regulatory Commission for a proposed advanced nuclear project in Seadrift, Texas. The project could begin construction later this decade, but only if Dow confirms “the ability to deliver the project while achieving its financial return targets.”
Paolo F. Venneri, Michael Eades, Yonghee Kim
Nuclear Technology | Volume 197 | Number 1 | January 2017 | Pages 64-74
Technical Paper | doi.org/10.13182/NT16-80
Articles are hosted by Taylor and Francis Online.
This paper explores the possibility of passively controlling the reactivity of a nuclear thermal propulsion (NTP) reactor. The objective of this study is to limit the use of the radial control drums to start-up and shutdown procedures and ensure that the exact same operation is performed for each full-power burn. To achieve the goal, this work considers several design measures, which include a low-density burnable absorber in the tie-tube components of the core, the use of variable hydrogen density in the moderator element coolant passages, and the judicious selection of a modified mission profile to maximize the decay of 135Xe after operation. In addition, the improved stability from the enhanced fuel temperature feedback due to the implementation of low-enriched-uranium fuel is also exploited for the realization of passive reactivity control. In this work, a passive reactivity control system is implemented in the Superb Use of Low Enriched Uranium (SULEU) NTP core and analyzed in terms of its ability to fulfill a NASA Mars Mission Design Reference Architecture 5.0–style mission. It is concluded that the use of the control drums can be limited to start-up and shutdown operations only, eliminating operator input in order to maintain a constant power level in the core.