ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Paolo F. Venneri, Michael Eades, Yonghee Kim
Nuclear Technology | Volume 197 | Number 1 | January 2017 | Pages 64-74
Technical Paper | doi.org/10.13182/NT16-80
Articles are hosted by Taylor and Francis Online.
This paper explores the possibility of passively controlling the reactivity of a nuclear thermal propulsion (NTP) reactor. The objective of this study is to limit the use of the radial control drums to start-up and shutdown procedures and ensure that the exact same operation is performed for each full-power burn. To achieve the goal, this work considers several design measures, which include a low-density burnable absorber in the tie-tube components of the core, the use of variable hydrogen density in the moderator element coolant passages, and the judicious selection of a modified mission profile to maximize the decay of 135Xe after operation. In addition, the improved stability from the enhanced fuel temperature feedback due to the implementation of low-enriched-uranium fuel is also exploited for the realization of passive reactivity control. In this work, a passive reactivity control system is implemented in the Superb Use of Low Enriched Uranium (SULEU) NTP core and analyzed in terms of its ability to fulfill a NASA Mars Mission Design Reference Architecture 5.0–style mission. It is concluded that the use of the control drums can be limited to start-up and shutdown operations only, eliminating operator input in order to maintain a constant power level in the core.