ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Uranium spot price closes out 2024 at $72.63/lb
The uranium market closed out 2024 with a spot price of $72.63 per pound and a long-term price of $80.50 per pound, according to global uranium provider Cameco.
K. Samec
Nuclear Technology | Volume 162 | Number 3 | June 2008 | Pages 358-378
Technical Paper | Accelerators | doi.org/10.13182/NT08-A3962
Articles are hosted by Taylor and Francis Online.
A significant milestone in the Megapie project, the world's first liquid-metal neutron spallation source, was reached when its containment structure was proof tested in a full-scale liquid-metal leak experiment. The experimental apparatus used in testing the effects of a liquid-metal leak of lead-bismuth eutectic on a heavy-water-cooled confinement at full scale is described. Measurements taken during the experiment validated the design chosen for the containment, a water-cooled aluminium double hull, and demonstrated that the experimental apparatus was capable of reproducing an accidental leak. The data acquired during this one-off experiment can be used in the future to assess liquid-metal leaks analytically.In the event of a catastrophic failure in the spallation source, the experiment proved that the products of the ensuing liquid-metal leak would be safely contained and cooled. Furthermore, analytical methods used in predicting the outcome of a leak were validated. Indeed, transient fluid-dynamics, thermal and thermostructural calculations performed ahead of the test to predict temperatures and stresses in the aluminum containment and temperatures of the cooling loop agreed well with measurements.