ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
David L. Luxat, Donald A. Kalanich, Joshua T. Hanophy, Randall O. Gauntt, Richard M. Wachowiak
Nuclear Technology | Volume 196 | Number 3 | December 2016 | Pages 684-697
Technical Paper | doi.org/10.13182/NT16-57
Articles are hosted by Taylor and Francis Online.
The Modular Accident Analysis Program (MAAP), Version 5 (MAAP5) and Methods of Estimation of Leakages and Consequences of Releases (MELCOR) are widely used integral plant response analysis computer codes. Both programs have been developed over the past 30 years for the purpose of simulating a range of beyond-design-basis accidents. The codes are benchmarked against numerous separate-effects experiments that reflect, to varying degrees, conditions expected to arise in light water reactor accidents. Such separate-effects tests, however, do not completely represent the novel physics that can arise through the interaction of multiple phenomena and physical processes at a reactor scale. Furthermore, aside from the Three Mile Island Unit 2 (TMI-2) core damage event, there is limited information available to evaluate reactor-scale behavior. Both MAAP5 and MELCOR have developed models to capture reactor-scale accident progression that, to a certain extent, extrapolate from separate-effects experiments, with assessment against the TMI-2 event only. Because of the limited information available to assess these extrapolated reactor-scale models, differences in MAAP5 and MELCOR code predictions do exist, most notably in the simulation of in-vessel core-melt progression. While these differences are not necessarily influential for the key metrics evaluated in probabilistic risk assessments, they can have a more pronounced impact on studies assessing the efficacy of accident management measures. This paper reports the first phase of a MAAP-MELCOR crosswalk designed to identify the key core-melt progression modeling differences. The results of this study highlight the impact that assumptions about reactor-scale, in-vessel core debris morphology have on (a) the potential for high temperatures to develop above the reactor core and in the main steam lines and (b) the magnitude and extent of the period for in-vessel hydrogen generation. These examples play critical roles in the evolution of challenges to the reactor pressure vessel pressure boundary and containment and are ultimately central to the evaluation of accident management effectiveness.