ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
X-energy, Dow apply to build an advanced reactor project in Texas
Dow and X-energy announced today that they have submitted a construction permit application to the Nuclear Regulatory Commission for a proposed advanced nuclear project in Seadrift, Texas. The project could begin construction later this decade, but only if Dow confirms “the ability to deliver the project while achieving its financial return targets.”
S. W. Hong, Y. S. Na, S. H. Hong, J. H. Song
Nuclear Technology | Volume 196 | Number 3 | December 2016 | Pages 538-552
Technical Paper | doi.org/10.13182/NT16-9
Articles are hosted by Taylor and Francis Online.
Some advanced reactors adapt the in-vessel corium retention concept by cooing the outside wall of the reactor vessel in severe accidents. If a reactor vessel failure happens in this case, the molten corium in the reactor vessel is directly injected into the water in the reactor cavity without the process of a free fall. Experiments using ZrO2 and molten corium to simulate the conditions in which the reactor vessel is fully flooded were recently carried out at the Test for Real cOrium Interaction with water (TROI) experimental facility, and the results are compared with the data produced under conditions in which the reactor vessel is partially flooded. It was observed that the melt front velocity in the water under submerged reactor conditions is much faster than that under partially flooded reactor cavity conditions, and a large bubble was observed at the surface of the mixing zone under submerged reactor conditions. Accordingly, it is estimated that the breakup of the melt jet in the water during the fuel-coolant interaction (FCI) test under submerged reactor conditions would be different than that of the FCI test under partially flooded reactor cavity conditions.