ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
S. W. Hong, Y. S. Na, S. H. Hong, J. H. Song
Nuclear Technology | Volume 196 | Number 3 | December 2016 | Pages 538-552
Technical Paper | doi.org/10.13182/NT16-9
Articles are hosted by Taylor and Francis Online.
Some advanced reactors adapt the in-vessel corium retention concept by cooing the outside wall of the reactor vessel in severe accidents. If a reactor vessel failure happens in this case, the molten corium in the reactor vessel is directly injected into the water in the reactor cavity without the process of a free fall. Experiments using ZrO2 and molten corium to simulate the conditions in which the reactor vessel is fully flooded were recently carried out at the Test for Real cOrium Interaction with water (TROI) experimental facility, and the results are compared with the data produced under conditions in which the reactor vessel is partially flooded. It was observed that the melt front velocity in the water under submerged reactor conditions is much faster than that under partially flooded reactor cavity conditions, and a large bubble was observed at the surface of the mixing zone under submerged reactor conditions. Accordingly, it is estimated that the breakup of the melt jet in the water during the fuel-coolant interaction (FCI) test under submerged reactor conditions would be different than that of the FCI test under partially flooded reactor cavity conditions.