ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
N. Zweibaum, Z. Guo, J. C. Kendrick, P. F. Peterson
Nuclear Technology | Volume 196 | Number 3 | December 2016 | Pages 641-660
Technical Paper | doi.org/10.13182/NT16-15
Articles are hosted by Taylor and Francis Online.
The capability to validate integral transient response models is a key issue for licensing new reactor designs. The Compact Integral Effects Test (CIET 1.0) facility reproduces the thermal-hydraulic response of fluoride salt–cooled high-temperature reactors (FHRs) under forced- and natural-circulation operation. CIET 1.0 provides validating data to confirm the predicted performance of the direct reactor auxiliary cooling system, used for natural-circulation–driven decay heat removal in FHRs, under a set of reference licensing basis events. CIET 1.0 uses a simulant fluid, DOWTHERM A oil, which, at relatively low temperatures (50°C to 120°C), matches the Prandtl, Reynolds, and Grashof numbers of the major liquid salts simultaneously, at 50% geometric scale and heater power under 2% of prototypical conditions. CIET 1.0 has been designed, fabricated, filled with DOWTHERM A oil, and operated. Isothermal pressure drop tests were completed, with extensive pressure data collection to determine friction losses in the system. The project then entered a phase of heated tests, from parasitic heat loss tests to more complex feedback control tests and natural-circulation experiments, with the ultimate goal of validating best-estimate FHR models using RELAP5-3D and the novel one-dimensional FHR Advanced Natural Circulation Analysis (FANCY) code. This paper introduces the scaling strategy, design, and fabrication aspects, and start-up testing results from CIET 1.0. The CIET 1.0 model in RELAP5-3D and FANCY is detailed, and verification and validation efforts are presented. For various heat input levels and temperature boundary conditions, mass flow rates are compared between RELAP5-3D and FANCY results, analytical solutions when available, and experimental data, for both single and coupled natural-circulation loops. The study shows that both RELAP5-3D and FANCY provide excellent predictions of steady-state natural circulation in CIET 1.0, with mass flow rates within 13% of experimental data, suggesting that both codes are good candidates for design and licensing of FHR technology.