ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
N. Zweibaum, Z. Guo, J. C. Kendrick, P. F. Peterson
Nuclear Technology | Volume 196 | Number 3 | December 2016 | Pages 641-660
Technical Paper | doi.org/10.13182/NT16-15
Articles are hosted by Taylor and Francis Online.
The capability to validate integral transient response models is a key issue for licensing new reactor designs. The Compact Integral Effects Test (CIET 1.0) facility reproduces the thermal-hydraulic response of fluoride salt–cooled high-temperature reactors (FHRs) under forced- and natural-circulation operation. CIET 1.0 provides validating data to confirm the predicted performance of the direct reactor auxiliary cooling system, used for natural-circulation–driven decay heat removal in FHRs, under a set of reference licensing basis events. CIET 1.0 uses a simulant fluid, DOWTHERM A oil, which, at relatively low temperatures (50°C to 120°C), matches the Prandtl, Reynolds, and Grashof numbers of the major liquid salts simultaneously, at 50% geometric scale and heater power under 2% of prototypical conditions. CIET 1.0 has been designed, fabricated, filled with DOWTHERM A oil, and operated. Isothermal pressure drop tests were completed, with extensive pressure data collection to determine friction losses in the system. The project then entered a phase of heated tests, from parasitic heat loss tests to more complex feedback control tests and natural-circulation experiments, with the ultimate goal of validating best-estimate FHR models using RELAP5-3D and the novel one-dimensional FHR Advanced Natural Circulation Analysis (FANCY) code. This paper introduces the scaling strategy, design, and fabrication aspects, and start-up testing results from CIET 1.0. The CIET 1.0 model in RELAP5-3D and FANCY is detailed, and verification and validation efforts are presented. For various heat input levels and temperature boundary conditions, mass flow rates are compared between RELAP5-3D and FANCY results, analytical solutions when available, and experimental data, for both single and coupled natural-circulation loops. The study shows that both RELAP5-3D and FANCY provide excellent predictions of steady-state natural circulation in CIET 1.0, with mass flow rates within 13% of experimental data, suggesting that both codes are good candidates for design and licensing of FHR technology.