ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Francisco I. Valentín, Narbeh Artoun, Ryan Anderson, Masahiro Kawaji, Donald M. McEligot
Nuclear Technology | Volume 196 | Number 3 | December 2016 | Pages 661-673
Technical Paper | doi.org/10.13182/NT16-46
Articles are hosted by Taylor and Francis Online.
Very high temperature reactors (VHTRs) with helium-cooled prismatic cores are one type of Generation IV gas-cooled reactors proposed for implementation in next-generation nuclear power plants. To contribute to the VHTR development, a high-temperature/high-pressure test facility has been constructed and used to investigate the convection heat transfer of gaseous coolants. This test facility consisted of a single flow channel with a diameter of 16.8 mm in a graphite column with a length of 2.7 m (9 ft) equipped with four 2.3-kW heaters. Convection heat transfer experiments were conducted with air, nitrogen, and helium for inlet Reynolds number (Re) values ranging from 500 to 70000. Extensive three-dimensional numerical modeling was also performed using a commercial finite element package, COMSOL Multiphysics. The numerical results agreed with the convection heat transfer data, with maximum error percentages under 15%. Based on this agreement, important information was extracted from the numerical model regarding the axial and radial velocity and temperature profiles as well as the axial variations in gas properties. This work examines deteriorated turbulent heat transfer and flow laminarization for a wide range of Re, including laminar, transition, and turbulent flows.