ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Francisco I. Valentín, Narbeh Artoun, Ryan Anderson, Masahiro Kawaji, Donald M. McEligot
Nuclear Technology | Volume 196 | Number 3 | December 2016 | Pages 661-673
Technical Paper | doi.org/10.13182/NT16-46
Articles are hosted by Taylor and Francis Online.
Very high temperature reactors (VHTRs) with helium-cooled prismatic cores are one type of Generation IV gas-cooled reactors proposed for implementation in next-generation nuclear power plants. To contribute to the VHTR development, a high-temperature/high-pressure test facility has been constructed and used to investigate the convection heat transfer of gaseous coolants. This test facility consisted of a single flow channel with a diameter of 16.8 mm in a graphite column with a length of 2.7 m (9 ft) equipped with four 2.3-kW heaters. Convection heat transfer experiments were conducted with air, nitrogen, and helium for inlet Reynolds number (Re) values ranging from 500 to 70000. Extensive three-dimensional numerical modeling was also performed using a commercial finite element package, COMSOL Multiphysics. The numerical results agreed with the convection heat transfer data, with maximum error percentages under 15%. Based on this agreement, important information was extracted from the numerical model regarding the axial and radial velocity and temperature profiles as well as the axial variations in gas properties. This work examines deteriorated turbulent heat transfer and flow laminarization for a wide range of Re, including laminar, transition, and turbulent flows.