ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Chung-Hsien Liang, Kuo-Hwa Su
Nuclear Technology | Volume 162 | Number 3 | June 2008 | Pages 333-341
Technical Paper | Nuclear Plant Operations and Control | doi.org/10.13182/NT08-A3960
Articles are hosted by Taylor and Francis Online.
Silica concentration in the primary coolant of a reactor coolant system of a pressurized water nuclear plant is a considerable operational issue. It also becomes a safety issue if the crud is very significant. To keep its amount to a minimum is the basic requirement for the purpose of zinc injection in the primary system and protection against its deposition on the fuel rod and poor heat transfer on the primary system and piping. A boric acid cleanup machine has been developed, designed, and installed on the base floor at the auxiliary building of the Maanshan power station of Taiwan Power Company. It is located above the boric acid tank (BAT). This machine with reverse osmosis method was used to clean up boric acid of ~62 m3 stored in the BAT. The results show that its performance has excellent efficiency and capability. The silica concentration was reduced to ~0.605 ppm from the original value of ~3.150 ppm. The resulting waste contained ~2.52 wt% of boron depending on the original boron amounts in the BAT. After the cleanup is finished, the concentration of boron in the BAT still maintains its operable and safe operating range of 7000 to 7700 ppm. Finally, the written procedure has been completed in order that the machine will be applied as a routine cleanup system.