ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Yuh Ming Ferng, Yung Shin Tseng, Bau Shei Pei, S. Long Wang, Chunkuan Shih, Tsun Fu Hung
Nuclear Technology | Volume 162 | Number 3 | June 2008 | Pages 308-322
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT08-A3958
Articles are hosted by Taylor and Francis Online.
In this paper, possible influences of power uprate on the distribution characteristics of erosion-corrosion (E/C) wear sites were analyzed through proper two-phase models. These models include three-dimensional two-phase computational fluid dynamics (CFD) simulations and appropriate E/C analysis. An analytical approach was applied to boiling water reactors. Based on the simulation results, the present CFD simulations successfully predicted two-phase phenomena that occurred in the piping system including centrifugal effects, gravitational effects, an imbalance of phase and mass separation in a T-junction, etc. When coupled with the calculated two-phase flow structures, the appropriate E/C models can be used to indicate the local distributions of severe E/C wear sites on the wall of the fittings. This shows a reasonable agreement with the plant-measured results. With these models, the impacts of power uprate on the distribution characteristics of E/C wear sites can be investigated. Comparisons between the calculated results for 100, 105, and 110% power levels clearly reveal that the power uprate has an insignificant effect on the distribution characteristics of wear sites for the selected piping system under investigation, especially in the wear ranges.