ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Koichi Asakura, Yoshiyuki Kato, Hirotaka Furuya
Nuclear Technology | Volume 162 | Number 3 | June 2008 | Pages 265-275
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT08-A3955
Articles are hosted by Taylor and Francis Online.
The characteristics and sinterability of UO2-PuO2 mixed oxide (MH-MOX) powder prepared by the microwave heating denitration method were measured and compared with those of UO2 (ADU-UO2) powder prepared by the ADU method. Furthermore, the degree of surface roughness and flowability of MH-MOX powder were evaluated and also compared with those of ADU-UO2 powder. The degree of surface roughness of ADU-UO2 powder calcined at temperatures >700°C significantly decreased, and its sintered density also dropped below 80% theoretical density. However, the degree of surface roughness and sinterability of MH-MOX powder calcined at 950°C were higher than those of ADU-UO2 powder. These results could be understood using the concept of Hüttig and Tamman temperatures, which is commonly cited for ceramic materials. The flowabilities of MH-MOX and ADU-UO2 powders decreased with an increase of compressibility, and they were categorized as non-free-flowing according to Carr's theory on powder flowability. It is, therefore, necessary for the mixed powder of MH-MOX powder, ADU-UO2 powder, and dry recycled MOX scrap powder to be granulated to provide a free-flowing feed to the pelletizing press in the MOX pellet fabrication process.