ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
K. Nagarajan, T. Subramanian, B. Prabhakara Reddy, P. R. Vasudeva Rao, Baldev Raj
Nuclear Technology | Volume 162 | Number 2 | May 2008 | Pages 259-263
Technical Note | First International Pyroprocessing Research Conference | doi.org/10.13182/NT08-A3954
Articles are hosted by Taylor and Francis Online.
Reducing the cooling time of spent fast breeder reactor (FBR) fuel, thus reducing the doubling time and introducing metallic fuels into FBRs, is essential for meeting the increasing energy demand of India. Development of pyrochemical reprocessing technology for processing the spent FBR fuels is another prerequisite. Accordingly, studies on the molten salt electrorefining process for metallic fuels and the oxide electrowinning process for oxide fuels have been carried out at the Indira Gandhi Centre for Atomic Research, Kalpakkam. A laboratory-scale argon atmosphere facility for molten salt electrorefining process studies is operational. Using this facility, studies on all the unit operations of the process have been carried out on uranium alloys. A code, PRAGAMAN, based on thermochemical modeling has been developed to simulate the electrotransport behavior of elements during the electrorefining process. Based on our studies, the eutectic MgCl2-NaCl-KCl ternary salt has been proposed as the alternate electrolyte for the conventional 2CsCl-NaCl electrolyte for oxide processing. A facility to demonstrate the remotization of all the process steps of the molten salt electrorefining process flow sheet for metallic fuels at 1- to 3-kg scale is being set up. Basic electrochemical studies on the reduction behavior of the chlorides and oxychlorides of uranium and the lanthanides in molten salts have also been carried out. This paper describes the studies carried out so far and the plans for the near future.