ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Eung-Ho Kim, Geun-Il Park, Yung-Zun Cho, Hee-Chul Yang
Nuclear Technology | Volume 162 | Number 2 | May 2008 | Pages 208-218
Technical Paper | First International Pyroprocessing Research Conference | doi.org/10.13182/NT08-A3949
Articles are hosted by Taylor and Francis Online.
In this work, a new approach to remove fission products including decay heat elements was proposed. This study aims at providing a new way to minimize the amount of waste salt for a repository, while removing the high decay heat fission products [Cs, Sr, Ba, and Y including other rare earth (RE) elements] from the waste salts generated during a chloride pyroprocessing procedure. These elements were removed in consecutive order from the pyroprocessing units. First, Cs could be released in the form of an oxide gas during voloxidation of UO2 and captured by a fly-ash filter. Then, Sr was recovered in the form of carbonate precipitates from the LiCl waste salt generated during the course of an electoreduction process, by using Li2CO3. Finally, RE elements plus yttrium in the spent LiCl-KCl waste salt generated during electrorefining were removed in the form of oxides (or oxychlorides) by using an oxygen sparging method. It was confirmed that the removal yields of each element were ~90% for Cs at ~1473 K, >99% for Sr at a molar ratio of [Li2CO3/SrCl2 = 3], and >99% for the RE elements plus yttrium. Using these successes as a basis, a reference flow sheet for removing the high decay heat elements from pyroprocessing units is presented in this work. Also, a salt regeneration system to minimize the amount of waste salt is proposed in this study.