ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NRC’s hybrid AI workshop coming up
The Nuclear Regulatory Commission will host a hybrid public workshop on September 24 from 9 a.m.-5 p.m. Eastern time to discuss its activities for the safe and secure use of artificial intelligence in NRC-regulated activities.
Jin-Mok Hur, Tack-Jin Kim, In-Kyu Choi, Jae Bum Do, Sun-Seok Hong, Chung-Seok Seo
Nuclear Technology | Volume 162 | Number 2 | May 2008 | Pages 192-198
Technical Paper | First International Pyroprocessing Research Conference | doi.org/10.13182/NT08-A3947
Articles are hosted by Taylor and Francis Online.
The chemical behavior of lanthanide oxides has been studied both for the electrolytic reduction process and the electrorefining process. At high concentration of Li2O in LiCl, lanthanide oxides reacted with Li2O to form mixed oxides, LiLnO2 (Ln = lanthanides), which decomposed to the starting materials at relatively low Li2O concentration. The chemical behavior of lanthanide oxides under the condition of electrorefining process was investigated by optical fiber spectrophotometry and X-ray diffraction. Lanthanide oxides reacted with U3+ to produce Ln3+ and UO2. The solubility of lanthanide oxides was measured under the electrolytic reduction and the electrorefining condition. All of the lanthanide oxides except Eu2O3 had relatively low solubility values in LiCl-KCl eutectic mixture at 450°C. Electrochemical behavior of Br-, I-, and Se2- in LiCl was also investigated by cyclic voltammetry and by X-ray diffraction. All of the anions reacted with platinum anode and gave platinum compounds.