ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Shinichi Kitawaki, Tadahiro Shinozaki, Mineo Fukushima, Tsuyoshi Usami, Noboru Yahagi, Masaki Kurata
Nuclear Technology | Volume 162 | Number 2 | May 2008 | Pages 118-123
Technical Paper | First International Pyroprocessing Research Conference | doi.org/10.13182/NT08-A3937
Articles are hosted by Taylor and Francis Online.
A series test of the pyroprocess was carried out to recover U-Pu alloy from mixed oxide (MOX) pellets. In the Li-reduction step, the reduction behavior of MOX was similar to that of UO2. In the electrorefining step, the separation factor between U and Pu was 1.9 for the combination of the reduced MOX anode and the liquid cadmium cathode, which agrees well with the value obtained in previous studies. Approximately 99% of the HM (U and Pu) initially present in the anode or molten salt was detected in the electrodes or molten salt after the electrolysis. Considering the analytical error of inductively coupled plasma-atomic emission spectroscopy, this mass balance is reasonable. The amount of U remaining in the anode was slightly larger than that of Pu, due to the reoxidation. The U-Pu alloy ingot was successfully formed by distillation of Cd.