ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Uranium spot price closes out 2024 at $72.63/lb
The uranium market closed out 2024 with a spot price of $72.63 per pound and a long-term price of $80.50 per pound, according to global uranium provider Cameco.
Jacopo Buongiorno, Lin-Wen Hu, Sung Joong Kim, Ryan Hannink, Bao Truong, Eric Forrest
Nuclear Technology | Volume 162 | Number 1 | April 2008 | Pages 80-91
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT08-A3934
Articles are hosted by Taylor and Francis Online.
Nanofluids are engineered colloidal suspensions of nanoparticles in water and exhibit a very significant enhancement (up to 200%) of the boiling critical heat flux (CHF) at modest nanoparticle concentrations (0.1% by volume). Since CHF is the upper limit of nucleate boiling, such enhancement offers the potential for major performance improvement in many practical applications that use nucleate boiling as their prevalent heat transfer mode. The Massachusetts Institute of Technology is exploring the nuclear applications of nanofluids, specifically the following three: