ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Fahri Aglar, Ali Tanrikut
Nuclear Technology | Volume 161 | Number 3 | March 2008 | Pages 286-298
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT08-A3927
Articles are hosted by Taylor and Francis Online.
Passive safety systems utilized in most of the advanced nuclear reactors make use of the condensation phenomenon to cope with the design-basis accidents. The inhibiting effect of noncondensable gases on condensation is an extremely important phenomenon, and several experimental research studies have been performed in recent years. Moreover, some theoretical investigations, including assessment of system analysis codes and in this connection modeling of new correlations with a reasonable accuracy, also have been carried out. The experimental work conducted at the Middle East Technical University (METU) was undertaken to investigate the inhibiting effect of noncondensable gas on the condensation phenomenon. The constituted database covers the wide range of system parameters such as the mixture Reynolds number and the air mass fraction. In this study, a new heat transfer correlation is proposed defining condensation phenomenon in the presence of air and is modeled using the METU database. Both the mixture Reynolds number and the condensate Reynolds number are taken into consideration to simulate the possible effect of interfacial waviness. The suppression effect of air, which is accumulated at the condensate-mixture interface, on heat flux is considered by inclusion of air mass fraction. The mean deviation with respect to the experimental data is determined to be 19.4%. Furthermore, the correlation was tested on the RELAP5 code, and the accuracy is determined to be 20%. The overall performance of the correlation, as coded in the RELAP5 code, is satisfactorily good with respect to experimental data for local heat flux, heat transfer coefficient, air mass fraction, and wall subcooling degree. The results obtained by utilizing the correlation yielded much better results compared with the original RELAP5 model, namely Colburn-Hougen.