ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Uranium spot price closes out 2024 at $72.63/lb
The uranium market closed out 2024 with a spot price of $72.63 per pound and a long-term price of $80.50 per pound, according to global uranium provider Cameco.
Povilas Poskas, Raimondas Kilda, Valdas Ragaisis, Terry M. Sullivan
Nuclear Technology | Volume 161 | Number 2 | February 2008 | Pages 140-155
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT08-A3919
Articles are hosted by Taylor and Francis Online.
Safety assessment of a near-surface repository of radioactive waste usually assumes a homogeneous distribution of activity within the vaults of the repository. However, in some cases there is radioactive waste, e.g., disused sealed sources, which should result in so-called "hot spots" when disposed of with other radioactive waste. An uneven distribution of waste activity is obtained in that case.The impact of heterogeneities in source distribution on radionuclide releases from a near-surface repository to the groundwater is analyzed in the paper. The conditions that stand for the application of homogeneous distribution of radioactive waste are revealed.The assessment has been performed using the methodology of the Improving Long Term Safety Assessment Methodologies for Near Surface Radioactive Waste Disposal Facilities (ISAM) study recommended by the International Atomic Energy Agency for the safety analysis of the near-surface repository. A description of the ISAM methodology and its application for the analysis of heterogeneity including a brief description of the disposal system of radioactive waste, the scenarios for the radionuclide migration, and the developed conceptual models are presented in the paper.The calculations have been carried out using the DUST and GWSCREEN computer codes, designed to simulate radionuclide transport. The modeling results for the case of homogeneous distribution of radioactive waste in the repository are considered. The impact of heterogeneities has been analyzed by comparing the modeling results of radionuclide transport for the heterogeneous case of waste distribution to the homogeneous case.