ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Povilas Poskas, Raimondas Kilda, Valdas Ragaisis, Terry M. Sullivan
Nuclear Technology | Volume 161 | Number 2 | February 2008 | Pages 140-155
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT08-A3919
Articles are hosted by Taylor and Francis Online.
Safety assessment of a near-surface repository of radioactive waste usually assumes a homogeneous distribution of activity within the vaults of the repository. However, in some cases there is radioactive waste, e.g., disused sealed sources, which should result in so-called "hot spots" when disposed of with other radioactive waste. An uneven distribution of waste activity is obtained in that case.The impact of heterogeneities in source distribution on radionuclide releases from a near-surface repository to the groundwater is analyzed in the paper. The conditions that stand for the application of homogeneous distribution of radioactive waste are revealed.The assessment has been performed using the methodology of the Improving Long Term Safety Assessment Methodologies for Near Surface Radioactive Waste Disposal Facilities (ISAM) study recommended by the International Atomic Energy Agency for the safety analysis of the near-surface repository. A description of the ISAM methodology and its application for the analysis of heterogeneity including a brief description of the disposal system of radioactive waste, the scenarios for the radionuclide migration, and the developed conceptual models are presented in the paper.The calculations have been carried out using the DUST and GWSCREEN computer codes, designed to simulate radionuclide transport. The modeling results for the case of homogeneous distribution of radioactive waste in the repository are considered. The impact of heterogeneities has been analyzed by comparing the modeling results of radionuclide transport for the heterogeneous case of waste distribution to the homogeneous case.