ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Sungwhan Cho, Jin Jiang
Nuclear Technology | Volume 161 | Number 2 | February 2008 | Pages 98-107
Technical Paper | Reactor Safety | doi.org/10.13182/NT08-A3916
Articles are hosted by Taylor and Francis Online.
A new technique for analyzing the effect of testing on shutdown system (SDS) number 1 (SDS1) in Canadian deuterium uranium (CANDU) nuclear power plants is proposed. The effect of the test on the core damage probability is quantified using a Markov process model. The model is used to derive the effect of the test frequency on the unavailability and the spurious reactor trip probability. Two core damage scenarios are considered: one from a process failure with the unavailable SDS and the other from a spurious reactor trip. The Markov process model is then used with the core damage scenarios to analyze the effect of the test frequency on the core damage probability. The quantified core damage probabilities indicate that performing more frequent surveillance tests does not necessarily decrease the risk. In fact, there exists an optimal test frequency beyond which the probability of core damage starts to increase. This optimal test frequency is of significance in practice.