ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Uranium spot price closes out 2024 at $72.63/lb
The uranium market closed out 2024 with a spot price of $72.63 per pound and a long-term price of $80.50 per pound, according to global uranium provider Cameco.
Jin-Young Cho, Jae-Seung Song, Chung-Chan Lee, Sung-Quun Zee, Jae-Il Lee, Kil-Sup Um
Nuclear Technology | Volume 161 | Number 1 | January 2008 | Pages 57-68
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT08-A3913
Articles are hosted by Taylor and Francis Online.
A lumped-refined multichannel analysis scheme is developed for a high-fidelity thermal-hydraulic (T-H) calculation through neutronics code coupling and applied to a control element assembly (CEA) ejection accident of the Ulchin Unit 3 nuclear power plant to quantify the conservatism of the conventional scheme. The high-fidelity core minimum departure from nucleate boiling (DNB) ratio calculation is realized by coupling more than two TORC dynamic link libraries (DLLs) under the control of the neutronics code, one for the lumped multichannel calculation and the others for the refined subchannel calculations. Realistic radial boundary conditions are supplied from the lumped multichannel calculation to the refined TORC DLL through the neutronics code. The CEA ejection accident problem is simulated from the DNB limiting conditions for operation condition, which is searched by adjusting the core radial peaking factor at a 30% axial offset power shape. The results indicate that the simplified hot-channel model contains ~15 and 5% conservatism in the core minimum DNB ratio and in the number of failed fuel rods, respectively, and reveals that those conservatisms are mainly due to the unrealistic isolated boundary condition. Therefore, it is concluded that the developed scheme can be effectively used to quantify the conservatism of a conventional DNB evaluation scheme.