ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
James H. P. Watson, Patrick Foss-Smith, Ray Lidzey
Nuclear Technology | Volume 160 | Number 3 | December 2007 | Pages 352-360
Technical Note | Radioactive Waste Management and Disposal | doi.org/10.13182/NT07-A3906
Articles are hosted by Taylor and Francis Online.
This paper describes the uptake of plutonium, 238Pu, by an adsorbent consisting of Brimac 216 natural carbon, a type of bone char. A strongly magnetic Brimac 216 fine powder produced by Lidzey has been shown to be an excellent adsorbent for many radionuclides. After the adsorption of the radionuclides has taken place, from solution onto the magnetic Brimac 216 powder, the powder, together with the adsorbed radionuclides, can be rapidly removed from suspension, as a concentrate, using high gradient magnetic separation (HGMS). A comparison is drawn between experimental results using the conventional column filter, with bone char as the adsorbent medium, and calculations for the HGMS process to treat 3.22 m3 of solution containing 8 mgl-1 of 238Pu and to remove the 238Pu from the suspension to reduce the effluent to less than the maximum concentration limit (MCL) for 238Pu, which is 0.74 Bql-1; however, the minimum concentration value used here is less than the MCL and is 0.0444 Bql-1 (7.006 × 10-14 gl-1 of 238Pu) and is denoted as the lower concentration level. Calculations indicate that HGMS is considerably faster than the column filtration method. This leads to a significant reduction in the time required to process the solution, even though the HGMS process is repeated a number of times. Also, the mass of adsorbent requiring long-term storage is much smaller for HGMS than for the column filtration method.