ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
A. Poulesquen, C. Jégou
Nuclear Technology | Volume 160 | Number 3 | December 2007 | Pages 337-345
Technical Paper | Materials for Nuclear Systems | doi.org/10.13182/NT07-A3904
Articles are hosted by Taylor and Francis Online.
A combined transport and radiolysis model is proposed in this paper to predict the oxidation/dissolution of UO2 under alpha radiolysis of water. The UO2-water interface is divided into an arbitrary number of layers. The Chemsimul kinetic code is used for radiolysis calculations in each layer, and the modeling of transport between the layers is based on Fick's law. The calculation proceeds in an iterative way, and an alpha dose rate profile is taken into account as input data. To limit the calculation time, which depends on the computer capacity and the duration of the leaching experiment described, a compromise between the thickness and the number of cells has to be found. At present, simulations of leaching experiments lasting several days cannot be carried out because of the very long calculation time. However, the calculation has been compared with experimental results obtained under irradiation at high flux levels of a UO2-water interface subjected to a beam of He2+ particles generated by a cyclotron. Owing to computer time limitation, calculations are carried out by considering 200 layers, each 10 m thick, to simulate 1-h experiments. In the experimental geometry (monoenergetic linear alpha beam), the alpha dose rate profile is well described by a summation of Bragg curves. The comparison relates to experiments performed in aerated and deaerated media at a high flux of 3.3 × 1010 cm-2s-1 and 3.3 × 1011 cm-2s-1. The calculated uranium content in solution is three times lower than the experimental value, and the hydrogen peroxide concentration is ten times lower in aerated media. In deaerated media, however, the comparison is quite good. Finally, a calculation was carried out with a large imposed dissolved hydrogen concentration in solution to check the inhibition of matrix dissolution. The release of uranium in solution is relatively high despite the hydrogen concentration in solution because of the primary formation of hydrogen peroxide. This is probably because of a lack of knowledge concerning the inhibitor mechanism under alpha radiolysis (influence of the surface under alpha irradiation, hydrogen activation, validity of primary radiolytic yield in presence of H2, etc.), which is not taken into account in our calculations.