ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NRC’s hybrid AI workshop coming up
The Nuclear Regulatory Commission will host a hybrid public workshop on September 24 from 9 a.m.-5 p.m. Eastern time to discuss its activities for the safe and secure use of artificial intelligence in NRC-regulated activities.
Kyung Mo Kim, Yeong Shin Jeong, In Guk Kim, In Cheol Bang
Nuclear Technology | Volume 196 | Number 3 | December 2016 | Pages 598-613
Technical Paper | doi.org/10.13182/NT16-32
Articles are hosted by Taylor and Francis Online.
The importance of passive safety for commercial nuclear power plants has been emphasized after the nuclear accidents that occurred at Three Mile Island and Fukushima. A combination of unexpected human errors, severe natural disasters, and defects of system designs led to the accidents, thereby highlighting the vulnerability of established safety systems of commercial nuclear power plants. Various passive safety systems are under development to mitigate design-basis accidents. However, several uncertainties and problems have been pointed out. As a solution to the problems, this paper proposes various designs for a passive in-core cooling system (PINCs) based on hybrid heat pipes. The feasibility and coolability of the PINCs as a passive safety system for commercial pressurized water reactors was investigated using experimental works and numerical analyses. The PINCs showed sufficient coolability to mitigate station blackout conditions by delaying core uncovery. Additionally, several PINCs concepts for advanced nuclear power plants such as a small modular reactor and Generation IV reactors are suggested.