ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Manfred Fischer, Sevostian V. Bechta, Vladimir V. Bezlepkin, Ryoichi Hamazaki, Alexei Miassoedov
Nuclear Technology | Volume 196 | Number 3 | December 2016 | Pages 524-537
Technical Paper | doi.org/10.13182/NT16-19
Articles are hosted by Taylor and Francis Online.
In the event of a severe accident in a nuclear power plant with the core melting, the stabilization of the molten corium is an important mitigation issue, as it can avoid late containment failure caused by basemat penetration, overpressure, or severe damage to internal structures. The related failure modes may result in significant long-term radiological consequences and related high costs.
Because of this, the licensing frameworks of several countries now include a requirement to implement mitigative core melt stabilization measures. This applies not only to new builds but also to existing light water reactors.
The paper gives an overview of the ex-vessel core melt stabilization strategies developed during the last decades. These strategies are based on a variety of physical principles, like melt fragmentation in a deep water pool or during the molten core–concrete interaction with top flooding, water injection from the bottom (COMET), and retention in an outside-cooled crucible structure.
This overview covers the physical background and functional principles of these concepts, as well as their validation status and, if applicable, the remaining open issues and research and development needs. For the concepts based on melt retention inside a cooled crucible that have reached sufficient maturity to be implemented in current Generation III+ designs, like the VVER-1000/1200 and the European Pressurized Water Reactor, more detailed descriptions are provided, which include key aspects of the related technical realization.
The paper is compiled using contributions from the main developers of the individual concepts.