ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Xingang Zhao, Koroush Shirvan, Yingwei Wu, Mujid S. Kazimi
Nuclear Technology | Volume 196 | Number 3 | December 2016 | Pages 553-567
Technical Paper | doi.org/10.13182/NT16-45
Articles are hosted by Taylor and Francis Online.
With the objective of providing long-term energy supply via actinide breeding and burning, the next-generation boiling water reactor (BWR) design, the Hitachi’s resource-renewable BWR (RBWR), has been proposed. Unlike a traditional square lattice BWR fuel bundle, the RBWR bundles are shorter with hexagonal tight lattice arrangement and heterogeneous axial fuel zoning. The RBWR’s different core geometry combined with the higher power-to-flow ratio and void fraction necessitates the reexamination of the standard BWR thermal-hydraulic models.
For the prediction of dryout, the previously derived best-estimate empirical correlation showed significant scatter when compared to experimental data within its calibration database. In this work, the correlation is further calibrated and improved by supplementing tight bundle data with relevant critical power data for tubes and annuli to better quantify the effects of various parameters and by incorporating subchannel-level results to account for intra-assembly flow mixing. Another approach using the mechanistic three-field model is also investigated, and the minimum critical power ratio of the RBWR design is evaluated.
For the prediction of void fraction, measurements and the three-field model in annular flow regime reveal that the common drift flux approaches tend to overestimate the void fraction at small hydraulic diameters. The void fraction dependence on hydraulic diameter below 10 mm requires further experimentation and high-fidelity mechanistic simulations.