ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Xingang Zhao, Koroush Shirvan, Yingwei Wu, Mujid S. Kazimi
Nuclear Technology | Volume 196 | Number 3 | December 2016 | Pages 553-567
Technical Paper | doi.org/10.13182/NT16-45
Articles are hosted by Taylor and Francis Online.
With the objective of providing long-term energy supply via actinide breeding and burning, the next-generation boiling water reactor (BWR) design, the Hitachi’s resource-renewable BWR (RBWR), has been proposed. Unlike a traditional square lattice BWR fuel bundle, the RBWR bundles are shorter with hexagonal tight lattice arrangement and heterogeneous axial fuel zoning. The RBWR’s different core geometry combined with the higher power-to-flow ratio and void fraction necessitates the reexamination of the standard BWR thermal-hydraulic models.
For the prediction of dryout, the previously derived best-estimate empirical correlation showed significant scatter when compared to experimental data within its calibration database. In this work, the correlation is further calibrated and improved by supplementing tight bundle data with relevant critical power data for tubes and annuli to better quantify the effects of various parameters and by incorporating subchannel-level results to account for intra-assembly flow mixing. Another approach using the mechanistic three-field model is also investigated, and the minimum critical power ratio of the RBWR design is evaluated.
For the prediction of void fraction, measurements and the three-field model in annular flow regime reveal that the common drift flux approaches tend to overestimate the void fraction at small hydraulic diameters. The void fraction dependence on hydraulic diameter below 10 mm requires further experimentation and high-fidelity mechanistic simulations.