ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Uranium spot price closes out 2024 at $72.63/lb
The uranium market closed out 2024 with a spot price of $72.63 per pound and a long-term price of $80.50 per pound, according to global uranium provider Cameco.
Churl Yoon, Joo Hwan Park
Nuclear Technology | Volume 160 | Number 3 | December 2007 | Pages 314-324
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT07-A3902
Articles are hosted by Taylor and Francis Online.
The fluid flows going through the Canada Deuterium Uranium (CANDU) moderator inlet diffuser assembly consist of a pipe flow, a curved pipe flow, and an impinging jet. For predicting the velocity profile at the diffuser outlet faces, a computational fluid dynamics (CFD) analysis has been performed to simulate the internal flow in the diffuser assembly. For the validation of a CFD code, some experimental data were chosen for each flow, and various turbulence models were examined. The shear stress transport turbulence model was proven to be the most appropriate for a prediction of the impinging jets and to give better predictions for a curved pipe flow compared to the standard k-[curly epsilon] turbulence model. As a result of the investigation, detailed velocity profiles and turbulent parameters at the real diffuser outlets were obtained, which can be applied as an inlet boundary condition for the CANDU moderator analysis.