ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Kyoung M. Kang, Michael L. Corradini
Nuclear Technology | Volume 196 | Number 3 | December 2016 | Pages 511-523
Technical Paper | doi.org/10.13182/NT15-157
Articles are hosted by Taylor and Francis Online.
This work proposes a model to explain concrete anisotropic ablation by corium during a molten core–concrete interaction (MCCI). As a result of recent MCCI prototypic material experiments, core-concrete interaction (CCI) tests, and VULCANO tests, one observes that concrete ablation behavior consistently depends on the concrete materials used in the experiments. Specifically, tests with limestone-common-sand (LCS) concrete yielded isotropic concrete ablation, i.e., equal axial and radial concrete erosion. This is in comparison to anisotropic ablation in tests with siliceous (SIL) concrete, where radial ablation was much larger than axial ablation. This was an unexpected result because prior results of many MCCI simulant experiments indicated that nearly isotropic ablation was expected in prototypic material experiments regardless of concrete type. A new phenomenological model is proposed in this work based on a hypothesis that unifies the result of both previous simulant and prototypic material experiments, i.e., heat transfer area enhancement and delayed gas release caused by the presence of unmelted solid aggregate material that enters the molten pool. This model offers a logical and phenomenological explanation concerning anisotropic ablation as well as the capability to simulate anisotropic ablation. This model is implemented into the CORQUENCH code as part of this work. Comparisons of these simulation results obtained with this new model to the CCI experiments for cases with SIL concrete and anisotropic ablation show better agreement with the test data than the existing model.