ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
X-energy, Dow apply to build an advanced reactor project in Texas
Dow and X-energy announced today that they have submitted a construction permit application to the Nuclear Regulatory Commission for a proposed advanced nuclear project in Seadrift, Texas. The project could begin construction later this decade, but only if Dow confirms “the ability to deliver the project while achieving its financial return targets.”
Kyoung M. Kang, Michael L. Corradini
Nuclear Technology | Volume 196 | Number 3 | December 2016 | Pages 511-523
Technical Paper | doi.org/10.13182/NT15-157
Articles are hosted by Taylor and Francis Online.
This work proposes a model to explain concrete anisotropic ablation by corium during a molten core–concrete interaction (MCCI). As a result of recent MCCI prototypic material experiments, core-concrete interaction (CCI) tests, and VULCANO tests, one observes that concrete ablation behavior consistently depends on the concrete materials used in the experiments. Specifically, tests with limestone-common-sand (LCS) concrete yielded isotropic concrete ablation, i.e., equal axial and radial concrete erosion. This is in comparison to anisotropic ablation in tests with siliceous (SIL) concrete, where radial ablation was much larger than axial ablation. This was an unexpected result because prior results of many MCCI simulant experiments indicated that nearly isotropic ablation was expected in prototypic material experiments regardless of concrete type. A new phenomenological model is proposed in this work based on a hypothesis that unifies the result of both previous simulant and prototypic material experiments, i.e., heat transfer area enhancement and delayed gas release caused by the presence of unmelted solid aggregate material that enters the molten pool. This model offers a logical and phenomenological explanation concerning anisotropic ablation as well as the capability to simulate anisotropic ablation. This model is implemented into the CORQUENCH code as part of this work. Comparisons of these simulation results obtained with this new model to the CCI experiments for cases with SIL concrete and anisotropic ablation show better agreement with the test data than the existing model.