ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Kyoung M. Kang, Michael L. Corradini
Nuclear Technology | Volume 196 | Number 3 | December 2016 | Pages 511-523
Technical Paper | doi.org/10.13182/NT15-157
Articles are hosted by Taylor and Francis Online.
This work proposes a model to explain concrete anisotropic ablation by corium during a molten core–concrete interaction (MCCI). As a result of recent MCCI prototypic material experiments, core-concrete interaction (CCI) tests, and VULCANO tests, one observes that concrete ablation behavior consistently depends on the concrete materials used in the experiments. Specifically, tests with limestone-common-sand (LCS) concrete yielded isotropic concrete ablation, i.e., equal axial and radial concrete erosion. This is in comparison to anisotropic ablation in tests with siliceous (SIL) concrete, where radial ablation was much larger than axial ablation. This was an unexpected result because prior results of many MCCI simulant experiments indicated that nearly isotropic ablation was expected in prototypic material experiments regardless of concrete type. A new phenomenological model is proposed in this work based on a hypothesis that unifies the result of both previous simulant and prototypic material experiments, i.e., heat transfer area enhancement and delayed gas release caused by the presence of unmelted solid aggregate material that enters the molten pool. This model offers a logical and phenomenological explanation concerning anisotropic ablation as well as the capability to simulate anisotropic ablation. This model is implemented into the CORQUENCH code as part of this work. Comparisons of these simulation results obtained with this new model to the CCI experiments for cases with SIL concrete and anisotropic ablation show better agreement with the test data than the existing model.