ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
H. Bonneville, L. Carenini, M. Barrachin
Nuclear Technology | Volume 196 | Number 3 | December 2016 | Pages 489-498
Technical Paper | doi.org/10.13182/NT16-27
Articles are hosted by Taylor and Francis Online.
The Accident Source Term Evaluation Code (ASTEC) is used to perform numerical simulations of the accidents at the Fukushima Daiichi nuclear power station in the frame of the Organisation for Economic Co-operation and Development/Nuclear Energy Agency Benchmark Study of the Accident at the Fukushima Daiichi Nuclear Power Station (BSAF) project. At present, simulations are available for Units 1, 2, and 3 of Fukushima Daiichi and for 6 days from the earthquake. A clear lesson from phase 1 of the project was that the uncertainties in the functioning of the safety systems and in accident progression are still large and there are many explanations for the measured thermohydraulic behavior. Rather than focusing on the thermohydraulic key parameters for which comparisons with measurements are available, this paper will address melt composition computation results that may provide insights relevant for the decommissioning process.
When molten corium relocates from the core down to the vessel lower head, the melt jets interact with water and may be totally or partially fragmented depending on the level of water. A U-Zr-O-Fe molten pool may form in the lower head, and because of chemical reactions, separation between nonmiscible metallic and oxide phases may occur. The models implemented in ASTEC enable the simulation of these phenomena. Up to five different axisymmetric corium layers in the vessel bottom head can be formed, which are, from bottom to top, a debris layer, a heavy metallic layer, an oxide layer, a light metallic layer, and another debris layer. An important process is the UO2 fuel reduction to metallic uranium by nonoxidized zirconium, which results in uranium transport to the dense metallic layer as demonstrated in the MAterial SCAling (MASCA) program.
Because of the large consensus on the accident progression of Fukushima Daiichi Unit 1, in this paper we present complex melt compositions before vessel failure for the current best-estimate cases for Unit 1. We do not present similar work performed for Units 2 and 3.
It should be underlined that in the case of vessel bottom failure, a part of this complex melt will relocate to the pedestal and molten core–concrete interaction will take place enhancing other complex physical phenomena with possible large consequences on the melt chemical composition and behavior.