ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
X-energy, Dow apply to build an advanced reactor project in Texas
Dow and X-energy announced today that they have submitted a construction permit application to the Nuclear Regulatory Commission for a proposed advanced nuclear project in Seadrift, Texas. The project could begin construction later this decade, but only if Dow confirms “the ability to deliver the project while achieving its financial return targets.”
H. Bonneville, L. Carenini, M. Barrachin
Nuclear Technology | Volume 196 | Number 3 | December 2016 | Pages 489-498
Technical Paper | doi.org/10.13182/NT16-27
Articles are hosted by Taylor and Francis Online.
The Accident Source Term Evaluation Code (ASTEC) is used to perform numerical simulations of the accidents at the Fukushima Daiichi nuclear power station in the frame of the Organisation for Economic Co-operation and Development/Nuclear Energy Agency Benchmark Study of the Accident at the Fukushima Daiichi Nuclear Power Station (BSAF) project. At present, simulations are available for Units 1, 2, and 3 of Fukushima Daiichi and for 6 days from the earthquake. A clear lesson from phase 1 of the project was that the uncertainties in the functioning of the safety systems and in accident progression are still large and there are many explanations for the measured thermohydraulic behavior. Rather than focusing on the thermohydraulic key parameters for which comparisons with measurements are available, this paper will address melt composition computation results that may provide insights relevant for the decommissioning process.
When molten corium relocates from the core down to the vessel lower head, the melt jets interact with water and may be totally or partially fragmented depending on the level of water. A U-Zr-O-Fe molten pool may form in the lower head, and because of chemical reactions, separation between nonmiscible metallic and oxide phases may occur. The models implemented in ASTEC enable the simulation of these phenomena. Up to five different axisymmetric corium layers in the vessel bottom head can be formed, which are, from bottom to top, a debris layer, a heavy metallic layer, an oxide layer, a light metallic layer, and another debris layer. An important process is the UO2 fuel reduction to metallic uranium by nonoxidized zirconium, which results in uranium transport to the dense metallic layer as demonstrated in the MAterial SCAling (MASCA) program.
Because of the large consensus on the accident progression of Fukushima Daiichi Unit 1, in this paper we present complex melt compositions before vessel failure for the current best-estimate cases for Unit 1. We do not present similar work performed for Units 2 and 3.
It should be underlined that in the case of vessel bottom failure, a part of this complex melt will relocate to the pedestal and molten core–concrete interaction will take place enhancing other complex physical phenomena with possible large consequences on the melt chemical composition and behavior.