ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Abhishek Saxena, Jan Eiholzer, Harshank Agarwal, Horst-Michael Prasser
Nuclear Technology | Volume 196 | Number 3 | December 2016 | Pages 568-587
Technical Paper | doi.org/10.13182/NT16-20
Articles are hosted by Taylor and Francis Online.
The thermal-hydraulic design characteristics of a boiling water reactor are strongly dependent on the physics of heat-removing mechanisms from nuclear rods. Performance is often limited by a lack of understanding of the heat and momentum transfer in thin liquid films close to dryout. This is particularly important with regard to power uprates of reactors. Flow control by functional spacers equipped with vanes adds complexity to the flow behavior. Instead of improving the heat removal, they can cause a local reduction of the film thickness under unfavorable conditions. This work presents a novel experimental technique to measure the velocity of the liquid phase and to study the turbulent mixing of a passive scalar in the film. The studies were performed in vertical annular flow in a double-subchannel geometry. The liquid film was labeled by either continuous or pulsed tracer injection. An electrically conductive tracer (salt solution) is injected into the film consisting of deionized water. The salt is traced using a liquid film sensor, a high-frequency nonintrusive conductivity-based technique. The experiments are conducted with and without a swirl-type spacer to quantify the effect of the spacers on the film flow for different gas and liquid flow rates. An ensemble averaging of the data obtained from individual injection pulses provides time-averaged liquid velocities in the film. The turbulent dispersion was characterized by analyzing the spread of the tracer in axial and lateral directions. Spacer vanes are found to induce a characteristic transverse movement of the liquid in the film. The effect of waves on mixing is analyzed and is found to enhance it.