ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
X-energy, Dow apply to build an advanced reactor project in Texas
Dow and X-energy announced today that they have submitted a construction permit application to the Nuclear Regulatory Commission for a proposed advanced nuclear project in Seadrift, Texas. The project could begin construction later this decade, but only if Dow confirms “the ability to deliver the project while achieving its financial return targets.”
Didier Jacquemain, Didier Vola, Renaud Meignen, Jean-Michel Bonnet, Florian Fichot, Emmanuel Raimond, Marc Barrachin
Nuclear Technology | Volume 196 | Number 2 | November 2016 | Pages 161-174
Technical Paper | doi.org/10.13182/NT16-13
Articles are hosted by Taylor and Francis Online.
Reactor core degradation and in-vessel and ex-vessel corium behavior have been major research topics for the last three decades to which Institut de Radioprotection et de Sûreté Nucléaire (IRSN) strongly contributed by the coordination of or the contribution to large research programs and through the development and validation of the severe accident (SA) ASTEC code. In recent years, the balance of research efforts has trended toward analyses of pros and cons and assessments of mitigation measures. The outcomes of risk significance analysis [including fuel-coolant interaction (FCI), hydrogen combustion, and molten core–concrete interaction (MCCI) risks] performed in France and corium behavior research are described. The focus these days is on (1) in-vessel melt retention (IVMR) strategies for future reactor concepts and the need to establish the reliability of such strategies when implemented in existing reactors and (2) in-containment corium cooling for existing reactors.
This paper summarizes the main achievements and remaining issues related to understanding and modeling of (1) reflooding of a degraded core where, despite substantial knowledge gained through research programs, additional efforts are required to establish the efficiency of such a measure and the associated risks for largely degraded cores; (2) corium behavior in the reactor pressure vessel (RPV) lower head where, despite the Organisation for Economic Co-operation and Development/Nuclear Energy Agency (OECD/NEA) MASCA program results, efforts remain necessary to predict RPV thermal loadings resulting from corium layer evolution and RPV resilience with and without IVMR measures (internal and/or external cooling); (3) FCI for which, despite the OECD/NEA SERENA program results, the knowledge is not sufficient to assess with confidence the induced risk of containment failure; and (4) MCCI, where the knowledge on corium cooling in the containment by top and/or bottom water flooding is insufficient to formulate conclusions regarding the efficiency of such measures. Of particular interest for top flooding are the water ingress and corium eruption processes. Specifically for top flooding, respective impacts of water ingress and corium eruption processes remain to be quantified in reactor conditions.
In support of these activities, substantial efforts are also being conducted at IRSN to constantly improve and validate nuclear material property databases that are key tools for corium behavior analysis.
This paper describes ongoing and future research programs performed at IRSN or internationally with IRSN coordination or participation to tackle the remaining issues and summarizes expected progress in modeling for SA codes, in risk analysis and in SA management.