ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Cesare Frepoli, Joseph P. Yurko, Ronaldo H. Szilard, Curtis L. Smith, Robert Youngblood, Hongbin Zhang
Nuclear Technology | Volume 196 | Number 2 | November 2016 | Pages 187-197
Technical Paper | doi.org/10.13182/NT16-66
Articles are hosted by Taylor and Francis Online.
The U.S. Nuclear Regulatory Commission (NRC) is considering a rulemaking that would revise requirements in 10 CFR 50.46 [also known as the emergency core cooling system (ECCS) rule]. Experimental work sponsored by the NRC suggested that the current regulatory acceptance criteria on ECCS performance during design-basis accidents are actually nonconservative for higher-burnup fuel, that embrittlement mechanisms not contemplated in the original criteria exist, and that the 17% limit on oxidation is not adequate to preserve the level of ductility that the NRC originally deemed to be warranted for adequate protection. The new rule imposes new acceptance criteria and is expected to be in effect within this decade. An implementation plan was developed that will give individual plants up to 7 years with which to comply once the rule is amended, depending on the status of each plant’s analysis of record, the effort involved, and existing analytical margin to the limits.
The proposed rule may challenge U.S. light water reactor fleet operational flexibility and economics. Within the U.S. Department of Energy Light Water Reactor Sustainability Program, the Idaho National Laboratory is pursuing an initiative that is focused on industry applications using Risk-Informed Safety Margin Characterization (RISMC) tools and methods applied to issues that are of current interest to the operating fleet. The mission of RISMC is to provide cost-beneficial approaches to safety analysis by leveraging modern methods, augmented tools (a combination of existing and new), and repurposed data (existing, but used in a new way).