ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Seong-Su Jeon, Soon-Joon Hong, Hyoung-Kyu Cho, Goon-Cherl Park
Nuclear Technology | Volume 196 | Number 2 | November 2016 | Pages 303-318
Technical Paper | doi.org/10.13182/NT16-22
Articles are hosted by Taylor and Francis Online.
A horizontal U-shaped heat exchanger (HX) submerged in a pool is under development as a piece of key equipment for a passive safety system in a nuclear power plant (NPP). For the successful design of the HX and the safety analysis of the NPP, reliable prediction of the heat transfer performance of the HX is important. At present, the design and the safety analysis of the passive safety systems are performed mainly using best-estimate thermal-hydraulic analysis codes such as RELAP5 and MARS. However, those codes do not have suitable models for both condensation heat transfer in the horizontal tube and natural convective and nucleate boiling heat transfer on the horizontal tube, both of which ultimately determine the heat transfer performance of the HX. This study developed a heat transfer model package for the horizontal U-shaped HX submerged in a pool by improving the horizontal in-tube condensation model and developing the out-tube natural convective and nucleate boiling model. From the validation results, the proposed model provides an improved prediction of HX performance (condensation, natural convection and nucleate boiling, and heat removal rate of the HX) compared to the default model in MARS.