ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Fusion office bill introduced in line with DOE reorganization plan
Cornyn
Padilla
Sens. Alex Padilla (D., Calif.) and John Cornyn (R., Texas) have introduced bipartisan legislation to formally establish the Office of Fusion at the Department of Energy. This move seeks to codify one of the many changes put forward by the recent internal reorganization plan for offices at the DOE.
Companion legislation has been introduced in the House of Representatives by Reps. Don Beyer (D., Va.) and Jay Obernolte (R., Calif.), who are cochairs of the House Fusion Energy Caucus.
Details: According to Obernolte, “Congress must provide clear direction and a coordinated federal strategy to move fusion from the lab to the grid, and this legislation does exactly that.”
B. Beeny, R. Vaghetto, K. Vierow, Y. A. Hassan
Nuclear Technology | Volume 196 | Number 2 | November 2016 | Pages 292-302
Technical Paper | doi.org/10.13182/NT16-36
Articles are hosted by Taylor and Francis Online.
The thermal-hydraulic response of large dry pressurized water reactor containments under loss-of-coolant-accident conditions—particularly with respect to containment pressure and sump pool temperature—is crucial for risk-informed decision making about Generic Safety Issue 191. Texas A&M University has developed models with several computer codes including MELCOR and GOTHIC to model such scenarios.
MELCOR is a best-estimate thermal-hydraulic and severe accident code created and actively maintained by Sandia National Laboratories for the U.S. Nuclear Regulatory Commission. GOTHIC is a thermal-hydraulic software package meant for design, licensing, and safety calculations for, among other systems, nuclear power plant containments. It was developed and is maintained by Numerical Applications Inc. for the Electronic Power Research Institute.
The overarching goal of the analyses presented here is twofold: (1) produce best-estimate time profiles of sump pool temperature under double-ended guillotine-break conditions with MELCOR and GOTHIC and (2) investigate differences between the MELCOR and GOTHIC code results via a sensitivity study. The sump pool temperature was selected as a key parameter to compare because it has direct implications for sump pool chemistry, residual heat removal during recirculation, and pressure drop across sump screens.
Aspects of the MELCOR and GOTHIC modeling strategies are discussed, and best estimates of the containment thermal-hydraulic response are presented. There are significant disagreements between code predictions. Hypotheses to explain the differences are tested through a comparative code sensitivity study. In this context, “sensitivity” refers to how containment thermal hydraulics respond to differences in code inputs or code phenomenological models. Sensitivity calculations are performed to exclude, individually, the model effects on comparative thermal-hydraulic responses of containment fan coolers, containment sprays, thermal surface condensation/films, and break source definition. Calculations are also performed with multiple models excluded. Using containment sump pool temperature as an indicator, the most impactful physics in terms of code agreement are those of thermal surfaces (condensation, film phenomena) whereas fan cooler models have a minimal effect. Containment spray exclusion results in disagreement in parts of the event sequence, while break source definition and/or break effluent flashing models lead to disagreement.