ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
B. Beeny, R. Vaghetto, K. Vierow, Y. A. Hassan
Nuclear Technology | Volume 196 | Number 2 | November 2016 | Pages 292-302
Technical Paper | doi.org/10.13182/NT16-36
Articles are hosted by Taylor and Francis Online.
The thermal-hydraulic response of large dry pressurized water reactor containments under loss-of-coolant-accident conditions—particularly with respect to containment pressure and sump pool temperature—is crucial for risk-informed decision making about Generic Safety Issue 191. Texas A&M University has developed models with several computer codes including MELCOR and GOTHIC to model such scenarios.
MELCOR is a best-estimate thermal-hydraulic and severe accident code created and actively maintained by Sandia National Laboratories for the U.S. Nuclear Regulatory Commission. GOTHIC is a thermal-hydraulic software package meant for design, licensing, and safety calculations for, among other systems, nuclear power plant containments. It was developed and is maintained by Numerical Applications Inc. for the Electronic Power Research Institute.
The overarching goal of the analyses presented here is twofold: (1) produce best-estimate time profiles of sump pool temperature under double-ended guillotine-break conditions with MELCOR and GOTHIC and (2) investigate differences between the MELCOR and GOTHIC code results via a sensitivity study. The sump pool temperature was selected as a key parameter to compare because it has direct implications for sump pool chemistry, residual heat removal during recirculation, and pressure drop across sump screens.
Aspects of the MELCOR and GOTHIC modeling strategies are discussed, and best estimates of the containment thermal-hydraulic response are presented. There are significant disagreements between code predictions. Hypotheses to explain the differences are tested through a comparative code sensitivity study. In this context, “sensitivity” refers to how containment thermal hydraulics respond to differences in code inputs or code phenomenological models. Sensitivity calculations are performed to exclude, individually, the model effects on comparative thermal-hydraulic responses of containment fan coolers, containment sprays, thermal surface condensation/films, and break source definition. Calculations are also performed with multiple models excluded. Using containment sump pool temperature as an indicator, the most impactful physics in terms of code agreement are those of thermal surfaces (condensation, film phenomena) whereas fan cooler models have a minimal effect. Containment spray exclusion results in disagreement in parts of the event sequence, while break source definition and/or break effluent flashing models lead to disagreement.