ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Q. Lv, H. C. Lin, S. Shi, X. Sun, R. N. Christensen, T. E. Blue, G. Yoder, D. Wilson, P. Sabharwall
Nuclear Technology | Volume 196 | Number 2 | November 2016 | Pages 319-337
Technical Paper | doi.org/10.13182/NT16-41
Articles are hosted by Taylor and Francis Online.
The Direct Reactor Auxiliary Cooling System (DRACS) is a passive decay heat removal system proposed for the Fluoride salt–cooled High-temperature Reactor (FHR) that combines coated particle fuel and a graphite moderator with a liquid fluoride salt as the coolant. The DRACS features three coupled natural circulation/convection loops, relying completely on buoyancy as the driving force. These loops are coupled through two heat exchangers, namely, the DRACS heat exchanger (DHX) and the natural draft heat exchanger (NDHX). To experimentally investigate the thermal performance of the DRACS, a scaled-down low-temperature DRACS test facility (LTDF) has been constructed. The design of the LTDF is obtained through a detailed scaling analysis based on a 200-kW prototypic DRACS design developed at The Ohio State University. The LTDF has a nominal power capacity of 6 kW. It employs water pressurized at 1.0 MPa as the primary coolant, water near the atmospheric pressure as the secondary coolant, and ambient air as the ultimate heat sink. Three accident scenarios simulated in the LTDF are discussed in this paper. In the first scenario, startup of the DRACS system from a cold state is simulated with no initial primary coolant flow. In the second scenario, a reactor coolant pump trip process is studied, during which a flow reversal phenomenon in the DRACS primary loop occurs. In the third scenario, the pump trip process is studied with a simulated intermediate heat exchanger in operation during the simulated core normal operation. In all scenarios, natural circulation flows are developed as the transients approach their quasi steady states, demonstrating the functionality of the DRACS. The accident scenarios in the prototypic FHR design corresponding to the simulated ones in the LTDF are also predicted by following a scaling-up process. The predictions show that at any time during the simulated transient, the salt temperatures will be higher than their melting temperatures and that therefore there will be no issue of salt freezing in the three projected accident scenarios. However, the scaled-up primary salt temperatures indicate that the prototypic DHX may have been undersized and may need to be redesigned.