ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
X-energy, Dow apply to build an advanced reactor project in Texas
Dow and X-energy announced today that they have submitted a construction permit application to the Nuclear Regulatory Commission for a proposed advanced nuclear project in Seadrift, Texas. The project could begin construction later this decade, but only if Dow confirms “the ability to deliver the project while achieving its financial return targets.”
Q. Lv, H. C. Lin, S. Shi, X. Sun, R. N. Christensen, T. E. Blue, G. Yoder, D. Wilson, P. Sabharwall
Nuclear Technology | Volume 196 | Number 2 | November 2016 | Pages 319-337
Technical Paper | doi.org/10.13182/NT16-41
Articles are hosted by Taylor and Francis Online.
The Direct Reactor Auxiliary Cooling System (DRACS) is a passive decay heat removal system proposed for the Fluoride salt–cooled High-temperature Reactor (FHR) that combines coated particle fuel and a graphite moderator with a liquid fluoride salt as the coolant. The DRACS features three coupled natural circulation/convection loops, relying completely on buoyancy as the driving force. These loops are coupled through two heat exchangers, namely, the DRACS heat exchanger (DHX) and the natural draft heat exchanger (NDHX). To experimentally investigate the thermal performance of the DRACS, a scaled-down low-temperature DRACS test facility (LTDF) has been constructed. The design of the LTDF is obtained through a detailed scaling analysis based on a 200-kW prototypic DRACS design developed at The Ohio State University. The LTDF has a nominal power capacity of 6 kW. It employs water pressurized at 1.0 MPa as the primary coolant, water near the atmospheric pressure as the secondary coolant, and ambient air as the ultimate heat sink. Three accident scenarios simulated in the LTDF are discussed in this paper. In the first scenario, startup of the DRACS system from a cold state is simulated with no initial primary coolant flow. In the second scenario, a reactor coolant pump trip process is studied, during which a flow reversal phenomenon in the DRACS primary loop occurs. In the third scenario, the pump trip process is studied with a simulated intermediate heat exchanger in operation during the simulated core normal operation. In all scenarios, natural circulation flows are developed as the transients approach their quasi steady states, demonstrating the functionality of the DRACS. The accident scenarios in the prototypic FHR design corresponding to the simulated ones in the LTDF are also predicted by following a scaling-up process. The predictions show that at any time during the simulated transient, the salt temperatures will be higher than their melting temperatures and that therefore there will be no issue of salt freezing in the three projected accident scenarios. However, the scaled-up primary salt temperatures indicate that the prototypic DHX may have been undersized and may need to be redesigned.