ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Q. Lv, H. C. Lin, S. Shi, X. Sun, R. N. Christensen, T. E. Blue, G. Yoder, D. Wilson, P. Sabharwall
Nuclear Technology | Volume 196 | Number 2 | November 2016 | Pages 319-337
Technical Paper | doi.org/10.13182/NT16-41
Articles are hosted by Taylor and Francis Online.
The Direct Reactor Auxiliary Cooling System (DRACS) is a passive decay heat removal system proposed for the Fluoride salt–cooled High-temperature Reactor (FHR) that combines coated particle fuel and a graphite moderator with a liquid fluoride salt as the coolant. The DRACS features three coupled natural circulation/convection loops, relying completely on buoyancy as the driving force. These loops are coupled through two heat exchangers, namely, the DRACS heat exchanger (DHX) and the natural draft heat exchanger (NDHX). To experimentally investigate the thermal performance of the DRACS, a scaled-down low-temperature DRACS test facility (LTDF) has been constructed. The design of the LTDF is obtained through a detailed scaling analysis based on a 200-kW prototypic DRACS design developed at The Ohio State University. The LTDF has a nominal power capacity of 6 kW. It employs water pressurized at 1.0 MPa as the primary coolant, water near the atmospheric pressure as the secondary coolant, and ambient air as the ultimate heat sink. Three accident scenarios simulated in the LTDF are discussed in this paper. In the first scenario, startup of the DRACS system from a cold state is simulated with no initial primary coolant flow. In the second scenario, a reactor coolant pump trip process is studied, during which a flow reversal phenomenon in the DRACS primary loop occurs. In the third scenario, the pump trip process is studied with a simulated intermediate heat exchanger in operation during the simulated core normal operation. In all scenarios, natural circulation flows are developed as the transients approach their quasi steady states, demonstrating the functionality of the DRACS. The accident scenarios in the prototypic FHR design corresponding to the simulated ones in the LTDF are also predicted by following a scaling-up process. The predictions show that at any time during the simulated transient, the salt temperatures will be higher than their melting temperatures and that therefore there will be no issue of salt freezing in the three projected accident scenarios. However, the scaled-up primary salt temperatures indicate that the prototypic DHX may have been undersized and may need to be redesigned.