ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
J. H. Song, J. H. Kim, S. W. Hong, B. T. Min, S. H. Hong
Nuclear Technology | Volume 160 | Number 3 | December 2007 | Pages 279-293
Technical Paper | Reactor Safety | doi.org/10.13182/NT07-A3899
Articles are hosted by Taylor and Francis Online.
To simulate a fuel and coolant interaction phenomenon during a postulated severe accident in a nuclear reactor, a series of experiments were performed using a partially oxidized corium, which is a mixture of UO2, ZrO2, Zr, and stainless steel. The composition of the melt was chosen such that a separation of the oxidic liquid from the metallic liquid occurred due to the existence of a miscibility gap. A melting and solidifying experiment and two fuel and coolant interaction experiments to explore the possibility of an energetic steam explosion were performed in the TROI facility.The placement of a metal-rich layer consisting of U, Fe, and ZrO2 beneath the oxidic corium layer due to the existence of a miscibility gap was observed in the melting and solidifying experiment. An energetic steam explosion with a propagation of the dynamic pressure wave was observed in one test out of the two tests. The physical and chemical analyses were performed for the corium particles collected after the experiments. It is shown that U, Zr, and Fe formed a heterogeneous mixture and the morphology was in irregular shape with many pores at nonuniform sizes. In the case of nonenergetic interaction, where the melt temperature was lower than the energetic case, the mean particle size was bigger than that of the energetic case, and the melt-water interaction resulted in a substantial amount of hydrogen gas generation, while the amount of hydrogen gas generation was negligible in the case with an energetic steam explosion.