ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Binh T. Pham, Grant L. Hawkes, Jeffrey J. Einerson
Nuclear Technology | Volume 196 | Number 2 | November 2016 | Pages 396-407
Technical Paper | doi.org/10.13182/NT16-31
Articles are hosted by Taylor and Francis Online.
This paper presents the quantification of uncertainty of the calculated temperature data for the Advanced Gas Reactor (AGR) fuel irradiation experiments conducted in the Advanced Test Reactor at Idaho National Laboratory in support of the Advanced Reactor Technologies Fuel Development and Qualification Program. The predicted temperatures with associated uncertainty for AGR tests using the ABAQUS finite element heat transfer code are used to validate the fission product transport and fuel performance simulation models. To quantify the uncertainty of calculated temperatures, this study identifies and analyzes model parameters of potential importance to the predicted fuel temperatures. The selection of input parameters for uncertainty quantification is based on the ranking of their influence on the variation of temperature predictions. Thus, selected input parameters include those with high sensitivity and those with large uncertainty. The propagation of model parameter uncertainty and sensitivity is then used to quantify the overall uncertainty of the calculated temperatures. The sensitivity analysis performed in this work went beyond the traditional local sensitivity. Using an experimental design, an analysis of pairwise interactions of model parameters was performed to establish the sufficiency of the first-order (linear) expansion terms in constructing the response surface. To achieve completeness, the uncertainty propagation made use of pairwise noise correlations of model parameters. The AGR-2 overall fuel temperature uncertainties reported here are less than 5% (or 60°C).