ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Binh T. Pham, Grant L. Hawkes, Jeffrey J. Einerson
Nuclear Technology | Volume 196 | Number 2 | November 2016 | Pages 396-407
Technical Paper | doi.org/10.13182/NT16-31
Articles are hosted by Taylor and Francis Online.
This paper presents the quantification of uncertainty of the calculated temperature data for the Advanced Gas Reactor (AGR) fuel irradiation experiments conducted in the Advanced Test Reactor at Idaho National Laboratory in support of the Advanced Reactor Technologies Fuel Development and Qualification Program. The predicted temperatures with associated uncertainty for AGR tests using the ABAQUS finite element heat transfer code are used to validate the fission product transport and fuel performance simulation models. To quantify the uncertainty of calculated temperatures, this study identifies and analyzes model parameters of potential importance to the predicted fuel temperatures. The selection of input parameters for uncertainty quantification is based on the ranking of their influence on the variation of temperature predictions. Thus, selected input parameters include those with high sensitivity and those with large uncertainty. The propagation of model parameter uncertainty and sensitivity is then used to quantify the overall uncertainty of the calculated temperatures. The sensitivity analysis performed in this work went beyond the traditional local sensitivity. Using an experimental design, an analysis of pairwise interactions of model parameters was performed to establish the sufficiency of the first-order (linear) expansion terms in constructing the response surface. To achieve completeness, the uncertainty propagation made use of pairwise noise correlations of model parameters. The AGR-2 overall fuel temperature uncertainties reported here are less than 5% (or 60°C).