ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Binh T. Pham, Grant L. Hawkes, Jeffrey J. Einerson
Nuclear Technology | Volume 196 | Number 2 | November 2016 | Pages 396-407
Technical Paper | doi.org/10.13182/NT16-31
Articles are hosted by Taylor and Francis Online.
This paper presents the quantification of uncertainty of the calculated temperature data for the Advanced Gas Reactor (AGR) fuel irradiation experiments conducted in the Advanced Test Reactor at Idaho National Laboratory in support of the Advanced Reactor Technologies Fuel Development and Qualification Program. The predicted temperatures with associated uncertainty for AGR tests using the ABAQUS finite element heat transfer code are used to validate the fission product transport and fuel performance simulation models. To quantify the uncertainty of calculated temperatures, this study identifies and analyzes model parameters of potential importance to the predicted fuel temperatures. The selection of input parameters for uncertainty quantification is based on the ranking of their influence on the variation of temperature predictions. Thus, selected input parameters include those with high sensitivity and those with large uncertainty. The propagation of model parameter uncertainty and sensitivity is then used to quantify the overall uncertainty of the calculated temperatures. The sensitivity analysis performed in this work went beyond the traditional local sensitivity. Using an experimental design, an analysis of pairwise interactions of model parameters was performed to establish the sufficiency of the first-order (linear) expansion terms in constructing the response surface. To achieve completeness, the uncertainty propagation made use of pairwise noise correlations of model parameters. The AGR-2 overall fuel temperature uncertainties reported here are less than 5% (or 60°C).