ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
A. Epiney, S. Canepa, O. Zerkak, H. Ferroukhi
Nuclear Technology | Volume 196 | Number 2 | November 2016 | Pages 223-237
Technical Paper | doi.org/10.13182/NT16-47
Articles are hosted by Taylor and Francis Online.
The STARS project at the Paul Scherrer Institut (PSI) has adopted the TRACE thermal-hydraulic code. For analyses involving interactions between system and core, a coupling of TRACE with the SIMULATE-3K (S3K) light water reactor (LWR) core simulator has been developed. In this configuration, the codes and associated simulation models play a central role to achieve a comprehensive safety analysis capability. Therefore, efforts have now been undertaken to consolidate the validation strategy by implementing a more rigorous and structured assessment approach for TRACE applications. The principle is to systematically track the evolution of a given set of predicted physical quantities of interest (QoIs) over a multidimensional parametric space. If properly set up, such environment should provide code developers and code users with persistent (less affected by user effect) and quantified information (sensitivity of QoIs) on the applicability of a simulation scheme (codes, methodology, and input models) for steady-state and transient analysis of full LWR systems. Through this, for each given transient/accident, critical paths of the validation process can be identified that could then translate into defining reference schemes to be applied for downstream predictive simulations. To illustrate this approach, this validation strategy is applied to an inadvertent blowdown event that occurred in a Swiss BWR/6. The transient was initiated by the spurious actuation of the automatic depressurization system. Here, the validation approach progresses through a number of dimensions: (a) different versions of the TRACE code; (b) the methodology dimension—in this case imposed power and updated TRACE core models are investigated; and (c) the nodalization dimension, where changes to the input model are assessed. For each step in each validation dimension, a common set of QoIs is investigated. For the steady-state results, these include fuel temperature distributions. For the transient part of the present study, the evaluated QoIs include the system pressure evolution and water carryover into the steam line. It has been seen that the improvements to the model predictions resulted in a small impact on the system pressure gradient, thus confirming a persistency of the downstream mechanical stress estimate, whereas the water carryover could vary by up to 150% as a function of the adopted simulation methodology.