ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
X-energy, Dow apply to build an advanced reactor project in Texas
Dow and X-energy announced today that they have submitted a construction permit application to the Nuclear Regulatory Commission for a proposed advanced nuclear project in Seadrift, Texas. The project could begin construction later this decade, but only if Dow confirms “the ability to deliver the project while achieving its financial return targets.”
M. Pellegrini, K. Dolganov, L. E. Herranz, H. Bonneville, D. Luxat, M. Sonnenkalb, J. Ishikawa, J. H. Song, R. O. Gauntt, L. Fernandez Moguel, F. Payot, Y. Nishi
Nuclear Technology | Volume 196 | Number 2 | November 2016 | Pages 198-210
Technical Paper | doi.org/10.13182/NT16-63
Articles are hosted by Taylor and Francis Online.
The Great East Japan earthquake occurred on March 11, 2011, at 14:46, and the subsequent tsunami led Tokyo Electric Power Company’s (TEPCO’s) Fukushima Daiichi Nuclear Power Station (NPS) beyond a design-basis accident. After the accident, the Japanese government and TEPCO compiled a roadmap toward an early resolution to the accident including, among the main activities, the employment and improvement of existing severe accident (SA) computer codes. In the member countries of the Organisation for Economic Co-operation and Development/Nuclear Energy Agency (OECD/NEA), SA codes were developed after the accident at Three Mile Island Unit 2 and widely employed to assess NPS status in the postulated SA conditions. Therefore, working plans have been set up with the country members of the OECD/NEA to apply existing SA codes to analyze the accidents at the Fukushima Daiichi NPS Units 1, 2, and 3 and support the decommissioning, constituting an international program named Benchmark Study of the Accident at the Fukushima Daiichi Nuclear Power Station (BSAF).
The objectives of the BSAF project are to analyze the accident progression of Fukushima Daiichi NPS, to raise the understanding of SA phenomena, to contribute to the improvement of the methods and models of the SA codes, and to define the status of the distribution of debris in the reactor pressure vessels and primary containment vessels for decommissioning.
The present technical paper summarizes the achievements obtained through a comparison of the results, emphasizing the portions of the accident where all the participants reached a common consensus and identifying still open questions where future work should be directed. Consensus exists on the current condition of Unit 1, where a large fraction of the fuel is assumed to have relocated ex-vessel. On the other hand, larger uncertainties exist for Units 2 and 3, where in-vessel and ex-vessel scenarios produce a reasonable prediction of the accident progression.