ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Xi Huang, Xu Cheng, Walter Klein-Heßling
Nuclear Technology | Volume 196 | Number 2 | November 2016 | Pages 248-259
Technical Paper | doi.org/10.13182/NT16-67
Articles are hosted by Taylor and Francis Online.
Falling water films have been employed for passive containment cooling in several Generation III pressurized water reactor designs. In this paper, the lumped-parameter (L-P) containment code system COCOSYS with an advanced water film model is applied to evaluate the performance of a passive containment cooling system (PCCS) during accidents. Based on the recent work and with further modification, an integrated water film model is developed. The new model considers different flow regimes of a liquid film as it flows downward and is being evaporated. The integrated model has been adapted to the L-P code and then implemented into COCOSYS. The new model enables the containment code to capture previously neglected phenomena, including the behavior of film breakup due to the reduction in mass; the formation of rivulets; the change in coverage rate and the development of rivulets; the change of velocity distribution as well as film thickness by considering the interfacial shear stress created by countercurrent air on the film surface; the hysteresis of rivulets, i.e., the process of advancing or retreating, involving changes in contact angles; and the influence of waves on the film surface.
The new model is validated against existing test results and experimental observations in the authors’ recent work and is further modified in this paper taking into account the influence of waves and the processes of rivulet hysteresis. The model is then assessed based on test nodalization, and the expected phenomena are observed. Afterward, the new model is applied to evaluate the performance of PCCS film cooling employed in the AP1000 containment.
It is concluded that the original film model tends to underestimate the pressure loads due to the absence of film breakup, rivulet behavior, and shear stress models. The coverage rate, as a new factor captured in the new model, limits the evaporation rate and thus restricts the cooling efficiency of the falling film. The sensitivity analysis reveals that the contact angle and hysteresis phenomenon, which were not previously considered in the code, play significant roles in PCCS film cooling. The advancing contact angle of the rivulets is a decisive factor for the peak pressure, while the retreating contact angle is influential in the later phase of cooling. It can be inferred from the study that the ideal situation for PCCS cooling is that in which the water film is approaching complete dryout at the bottom of the containment. The newly developed liquid film model helps improve the accuracy and reliability of the simulation results.