ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Ernst-Arndt Reinecke, Ahmed Bentaïb, Jürgen Dornseiffer, Daniel Heidelberg, Franck Morfin, Pascal Zavaleta, Hans-Josef Allelein
Nuclear Technology | Volume 196 | Number 2 | November 2016 | Pages 367-376
Technical Paper | doi.org/10.13182/NT16-4
Articles are hosted by Taylor and Francis Online.
Passive autocatalytic recombiners (PARs) have been installed inside light water reactor containments in many countries to remove hydrogen and, thus, to mitigate the combustion risk during a severe accident (SA). Due to the challenging SA boundary conditions, PARs are exposed to several deactivation risks during operation, which may cause a reduction of the hydrogen removal capacity. Such a deactivation may occur through different mechanisms and could in principle affect the start-up behavior up to the full loss of catalytic activity. To assess the interaction of PARs with the products of cable fires, a set of PAR catalyst samples has been introduced to the atmosphere of cable fire tests performed at Institut de Radioprotection et de Sûreté Nucléaire (IRSN), France. The subsequent surface analyses performed at Forschungszentrum Jülich (Germany) reveal a significant amount of carbon, chlorine (a constituent of polyvinyl chloride), zinc, and antimony (a flame retardant) on all catalyst samples compared to reference samples. The subsequent performance tests confirm that all catalyst sheets suffer a significant start-up delay of between 17 and 45 min compared to the reference samples. However, after burning off the soot deposition, the catalyst samples reach full conversion capacity and show immediate start-up behavior in a subsequent test. The present results clearly demonstrate the adverse effect of cable fire products on the efficiency of hydrogen conversion in a PAR. To further understand and quantify the impact of cable fire products and to assess their relevance for SA scenarios, further experimental as well as theoretical investigations are required. In particular, the combined influence of cable fire products and humidity, which has intentionally been omitted in the present study, should be investigated in the future due to the possible corrosive impact on the catalyst as well as the influence of humidity on the nature of the soot deposition.