ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
X-energy, Dow apply to build an advanced reactor project in Texas
Dow and X-energy announced today that they have submitted a construction permit application to the Nuclear Regulatory Commission for a proposed advanced nuclear project in Seadrift, Texas. The project could begin construction later this decade, but only if Dow confirms “the ability to deliver the project while achieving its financial return targets.”
Charles Forsberg, Per F. Peterson
Nuclear Technology | Volume 196 | Number 1 | October 2016 | Pages 13-33
Technical Paper | doi.org/10.13182/NT16-28
Articles are hosted by Taylor and Francis Online.
The fluoride salt–cooled high-temperature reactor (FHR) with a nuclear air-Brayton combined cycle (NACC) and firebrick resistance-heated energy storage (FIRES) is a new reactor and plant concept. The development of a new reactor is a large undertaking that requires a strong commercial case and a strong basis for government support to enable commercialization. The goals are (1) increase plant revenue by 50% to 100% relative to base-load nuclear plants with capital costs similar to light water reactors, (2) enable a zero-carbon nuclear renewable electricity grid, (3) no potential for major fuel failure and thus no potential for major radionuclide off-site releases in a beyond-design-basis accident, and (4) offer a pathway to more advanced energy systems. The approaches to achieve those goals are described herein.
The FHR uses liquid-salt coolants originally developed for molten salt reactors (MSRs) where the fuel is dissolved in the coolant. However, in the FHR the fuel is not dissolved in the coolant. Instead, the FHR uses graphite-based high-temperature gas-cooled reactor (HTGR) coated-particle fuel. This combination enables delivering heat to the power cycle between 600°C and 700°C that, in turn, enables the FHR to couple to NACC. Using an air-Brayton power cycle enables the FHR to operate as a base-load reactor and produce added electricity in a peaking mode with the addition of auxiliary heat (natural gas, stored heat, or hydrogen). The auxiliary heat-to-electricity production is a thermodynamic topping cycle with efficiencies of 66%. Because an FHR with NACC is more efficient in converting natural gas into peak electricity than a stand-alone natural gas plant (60%), it can economically compete with a natural gas plant for peak electricity production because it uses less fuel. NACC can also incorporate FIRES heat storage that enables buying electricity at low prices to later sell electricity at high prices. For every 100 MW(electric) of base-load capacity, the station output can vary from minus several hundred megawatts to +242 MW(electric) because of the capabilities of the NACC with FIRES. The FHR can be built in different sizes.
The use of high-temperature liquid-salt cooling and coated-particle fuel enables near-term reactor designs where large-scale fuel failure cannot occur, and thus, large-scale off-site releases of radionuclides cannot occur. Under extreme accident conditions decay heat can be passively conducted to the environment at temperatures below fuel failure temperatures and thus avoid the potential for large-scale radionuclide releases.
The FHR is the gateway technology to several advanced salt-cooled reactor systems that have additional capabilities. The MSR can be designed to enable breeding and actinide waste burning. New high-magnetic-field fusion systems may require liquid-salt cooling. The FHR would provide the required salt and power cycle technology for these advanced reactors. There are significant development challenges. The United States has a competitive advantage in developing the FHR because it leads in gas turbine technology, high-temperature materials, and HTGR fuels.