ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Yong Hoon Jeong, Mujid S. Kazimi
Nuclear Technology | Volume 160 | Number 2 | November 2007 | Pages 233-243
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT07-A3895
Articles are hosted by Taylor and Francis Online.
By using a combination of a nuclear reactor that emits no carbon dioxide and a high-efficiency gas turbine cycle, electric utilities can reduce their generating cost as well as minimize greenhouse gas emissions. The economic competitiveness of pure natural-gas combined-cycle (NGCC), nuclear-assisted NGCC, and pure nuclear power plants is studied, and the level of CO2 emission tax effects on the cost of electricity from each plant is defined.An advanced gas-cooled nuclear reactor in addition to a conventional NGCC as a heat source for the air exiting the compressor is considered. At a reactor outlet gas temperature of 900°C, the thermal contribution (fossil fuel saving and CO2 reduction) by nuclear energy in the nuclear-assisted NGCC cycle was 46.3%.To assess the economic competitiveness of the plants, the levelized electricity generation costs were calculated. The economics depend primarily on the cost of natural gas and the capital cost of the nuclear reactor. Obviously, the best plant option for low natural-gas cost is pure NGCC and is pure nuclear power for high natural-gas prices. The intersecting points are affected by the assumed carbon tax.Several synergetic effects for using nuclear and fossil powers together are quantified. First, since the electricity generation cost of the nuclear-assisted NGCC cycle is not as sensitive to gas price as the NGCC, the economic risk of fluctuations in gas prices can be minimized by adopting a nuclear-assisted NGCC cycle. Second, the high nuclear capital cost can be largely compensated for by the low capital cost of the gas turbine plant. For example, 3000 $/kW(electric) of nuclear capital cost can be effectively reduced to ~1500 $/kW(electric) for the hybrid plant. Third, nuclear-assisted NGCC has several advantages over the two single-fuel options in the reduction of high capital costs and high gas prices. In addition, the greenhouse gas emissions can be reduced by half by using nuclear-assisted NGCC, and the amount of nuclear spent fuel per kilowatt-hour would also be less than that of the pure nuclear option.