ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Ethan S. Chaleff, Thomas Blue, Piyush Sabharwall
Nuclear Technology | Volume 196 | Number 1 | October 2016 | Pages 53-60
Technical Paper | doi.org/10.13182/NT16-52
Articles are hosted by Taylor and Francis Online.
The molten fluoride salt eutectic LiF-NaF-KF (FLiNaK) has been proposed as a coolant for use in Generation IV reactors designed to operate at temperatures at which radiation heat transfer (RHT) may be significant. Little research has been performed into the absorption coefficient of FLiNaK as it pertains to thermal RHT. An estimate of the spectral absorption coefficient for FLiNaK has been generated using informed assumptions and existing data for the constituent salts. The effect of heat transfer, as it pertains to flowing salt in circular cross-section pipes with heated walls, has been investigated for laminar flow using a mathematical model. The combined energy equation, in various geometries, was solved for laminar flow, with the radiative heat flux calculated using the differential approximation. The percentage of energy transferred by radiation to the salt was found to be primarily a function of pipe diameter, wall temperature, and the salt absorption coefficient. A map of temperatures and pipe diameters has been generated, which indicates where RHT is significant. A correlation has been proposed, based on the mathematical model, to account for increase in Nusselt number due to radiation. Additional discussion is included on the effects of wall emissivity and high Reynolds flows.