ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
X-energy, Dow apply to build an advanced reactor project in Texas
Dow and X-energy announced today that they have submitted a construction permit application to the Nuclear Regulatory Commission for a proposed advanced nuclear project in Seadrift, Texas. The project could begin construction later this decade, but only if Dow confirms “the ability to deliver the project while achieving its financial return targets.”
Ethan S. Chaleff, Thomas Blue, Piyush Sabharwall
Nuclear Technology | Volume 196 | Number 1 | October 2016 | Pages 53-60
Technical Paper | doi.org/10.13182/NT16-52
Articles are hosted by Taylor and Francis Online.
The molten fluoride salt eutectic LiF-NaF-KF (FLiNaK) has been proposed as a coolant for use in Generation IV reactors designed to operate at temperatures at which radiation heat transfer (RHT) may be significant. Little research has been performed into the absorption coefficient of FLiNaK as it pertains to thermal RHT. An estimate of the spectral absorption coefficient for FLiNaK has been generated using informed assumptions and existing data for the constituent salts. The effect of heat transfer, as it pertains to flowing salt in circular cross-section pipes with heated walls, has been investigated for laminar flow using a mathematical model. The combined energy equation, in various geometries, was solved for laminar flow, with the radiative heat flux calculated using the differential approximation. The percentage of energy transferred by radiation to the salt was found to be primarily a function of pipe diameter, wall temperature, and the salt absorption coefficient. A map of temperatures and pipe diameters has been generated, which indicates where RHT is significant. A correlation has been proposed, based on the mathematical model, to account for increase in Nusselt number due to radiation. Additional discussion is included on the effects of wall emissivity and high Reynolds flows.