ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
M. L. Dunzik-Gougar, I. J. van Rooyen, C. M. Hill, T. Trowbridge, J. Madden, J. Burns
Nuclear Technology | Volume 196 | Number 1 | October 2016 | Pages 111-120
Technical Paper | doi.org/10.13182/NT15-129
Articles are hosted by Taylor and Francis Online.
Crystallographic information about layers of silicon carbide (SiC) deposited by chemical vapor deposition is essential to understanding layer performance, especially when the the layers are in nonplanar geometries (e.g., spherical). Electron backscatter diffraction (EBSD) was used to analyze spherical SiC layers using a different sampling approach that applied focused ion beam (FIB) milling to avoid the negative impacts of traditional sample polishing and address the need for very small samples of irradiated materials for analysis. The mechanical and chemical grinding and polishing of sample surfaces can introduce lattice strain and result in the unequal removal of SiC and the surrounding layers of different materials due to the hardness differences among these materials. The nature of layer interfaces is thought to play a key role in the performance of SiC; therefore, the analysis of representative samples at these interfacial areas is crucial. In the work reported herein, a FIB was employed in a novel manner to prepare a more representative sample for EBSD analysis from tristructural-isotropic layers that are free of effects introduced by mechanical and chemical preparation methods. In addition, the difficulty of handling neutron-irradiated microscopic samples (such as those analyzed in this work) has been simplified using pretilted mounting stages. The results showed that while the average grain sizes of samples may be similar, the grain boundary characteristics can differ significantly. Furthermore, low-angle grain boundaries comprised 25% of all boundaries in the FIB-prepared sample compared to only 1% to 2% in the polished sample from the same particle. This study demonstrated that the characterization results from FIB-prepared samples provide more repeatable results due to the elimination of the effects of sample preparation.