ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
X-energy, Dow apply to build an advanced reactor project in Texas
Dow and X-energy announced today that they have submitted a construction permit application to the Nuclear Regulatory Commission for a proposed advanced nuclear project in Seadrift, Texas. The project could begin construction later this decade, but only if Dow confirms “the ability to deliver the project while achieving its financial return targets.”
M. L. Dunzik-Gougar, I. J. van Rooyen, C. M. Hill, T. Trowbridge, J. Madden, J. Burns
Nuclear Technology | Volume 196 | Number 1 | October 2016 | Pages 111-120
Technical Paper | doi.org/10.13182/NT15-129
Articles are hosted by Taylor and Francis Online.
Crystallographic information about layers of silicon carbide (SiC) deposited by chemical vapor deposition is essential to understanding layer performance, especially when the the layers are in nonplanar geometries (e.g., spherical). Electron backscatter diffraction (EBSD) was used to analyze spherical SiC layers using a different sampling approach that applied focused ion beam (FIB) milling to avoid the negative impacts of traditional sample polishing and address the need for very small samples of irradiated materials for analysis. The mechanical and chemical grinding and polishing of sample surfaces can introduce lattice strain and result in the unequal removal of SiC and the surrounding layers of different materials due to the hardness differences among these materials. The nature of layer interfaces is thought to play a key role in the performance of SiC; therefore, the analysis of representative samples at these interfacial areas is crucial. In the work reported herein, a FIB was employed in a novel manner to prepare a more representative sample for EBSD analysis from tristructural-isotropic layers that are free of effects introduced by mechanical and chemical preparation methods. In addition, the difficulty of handling neutron-irradiated microscopic samples (such as those analyzed in this work) has been simplified using pretilted mounting stages. The results showed that while the average grain sizes of samples may be similar, the grain boundary characteristics can differ significantly. Furthermore, low-angle grain boundaries comprised 25% of all boundaries in the FIB-prepared sample compared to only 1% to 2% in the polished sample from the same particle. This study demonstrated that the characterization results from FIB-prepared samples provide more repeatable results due to the elimination of the effects of sample preparation.